首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Low-field magnetizationM(H) measurements can be used to probe the nature of the screening currents and the interlayer coupling in high-T c cuprates. Here we compare theM(H) behaviour of single crystals of Bi2Sr2CaCu2O8 and fully oxygenated and oxygen reduced YBa2Cu3O7??. In YBa2Cu3O7, theM(H) behaviour is consistent with anisotropic 3D superconductivity whilst in Bi2Sr2CaCu2O8, the surface screening currents are strongly affected by the presence of vortices, implying that the CuO2 planes are coupled via a weak Josephson interaction. In oxygen-deficient YBa2Cu3O6.7 (T c =63K), theM(H) behaviour at low temperatures is similar to that found for Bi2Sr2CaCu2O8, implying that the removal of oxygen from the chains has resulted in a dimensional crossover of the superconducting state in YBa2Cu3O7??. As the temperature approachesT c , the 3D behaviour is eventually restored as thec-axis coherence length ξ c becomes comparable with the interlayer spacingd.  相似文献   

2.
It is found that perfect Bi2Sr2?x La x CuO6+δ single crystals with the same concentrations of lanthanum x = 0.64 and excess oxygen δ = 0.237 exist in two types. Single crystals of the first type are obtained by slow cooling (the synthesis time is 90–105 h). They have a monoclinic superlattice and exhibit no superconducting transition down to 2 K. Crystals of the second type are obtained by rapid cooling (the synthesis time is 30–40 h) and are characterized by a orthorhombic superlattice and T c = 18 K. Thus, the superconducting transition temperature is determined not only by the concentration of carriers but also by the configuration of defects. A rhombic superlattice prevails in single crystals obtained by slow cooling in the lanthanum concentration range x = 0.3–0.5, while a monoclinic superlattice dominates in the range x = 0.75–0.85. This fact explains the high values of T c at optimal doping (x = 0.4) and the absence of high-T c superconductivity at p < 0.10.  相似文献   

3.
Solid solutions Bi4V2-x Fe x/2Nb x/2O11-δ (х?=?0.05–1.0) and Bi4V2-х-y Fe x Nb y O11–δ (with fixed x or y?=?0.2 and variable х or y?=?0.2–0.5 with step 0.1) were synthesized by the standard ceramic technology in the temperature range 773–1113 K and by mechanochemical activation method using Bi2O3, V2O5 Fe2O3, and Nb2O5 oxides as initial compounds. The formation of solid solutions was studied. Ranges of stability and temperature values of phase transitions for different polymorphous modifications were defined using dylatometric and thermo gravimetric studies. The morphology and the local chemical composition of the ceramic samples were studied. Samples with concentration of dopants x?>?0.3 contain two phases; both major and impurity phases are solid solutions of the BIFENBVOX type although the dopants atoms distribution between them is random. The thermal expansion coefficients (TEC) were measured. The electrical conductivity of ceramic samples was investigated in a wide range of temperatures. The highest conductivity values among the studied solid solutions are observed for the sample with a small amount of dopants x?=?0.25.  相似文献   

4.
Single-crystal samples of the Bi2 + xSr2 ? x ? yCu1 + yO6 + δ system revealed anomalous (negative) thermal expansion in the temperature range 10–20 K. Magnetic fields of 1–3 T were found to strongly affect the position and width of the anomaly region. A thermal-expansion singularity was detected at temperatures T≈30–50 K, which may be related to the formation of a pseudogap.  相似文献   

5.
A comparative analysis of the results of the X-ray and Mösbauer studies of the high-temperature superconductor (HTSC) YBa2Cu3O y and YBa2Cu3 ? x 57Fe x O y (x = 0.015, T c ≈ 91.5 K) samples with different average grain sizes <D> in the micron and submicron ranges has been performed. The regularities in the change in the lattice parameter c and in the degree of occupation of different oxygen sites in the CuOδ chain planes taking place at the decrease in <D> have been studied. The quantitative interrelation between the parameter c and the oxygen content δ in the CuOδ planes exceeding the amount of the mobile oxygen due to the interplane oxygen redistribution is established.  相似文献   

6.
Nominally electron doped antiferromagnetic tetragonal nonsuperconducting Nd2?xCe x CuO4+δ(x=0.12) has been shown to manifest strong angular dependence of the in-plane magnetoresistance on the orientation of the external magnetic field within the ab plane in many aspects similar to that observed in hole doped YBa2Cu3O7?δ and La2?xSrxCuO4. Specific fourfold angular magnetoresistance anisotropy amounting to several percents was observed in oxygen annealed films at low temperatures and in an external magnetic field up to 5.5 T. The strong temperature dependence and fourfold symmetry observed in our sample points to a specific role of rare-earth (Nd) ions in magnetoresistance anisotropy. At low temperature T = 1.4 K, we observed the unusual transformation of magnetoresistance response with increasing the external magnetic field, which seems to be a manifestation of a combined effect of a crossover between first and second order spin-flop transitions and a field-dependent rare-earth contribution to quasiparticle magnetotransport.  相似文献   

7.
The temperature dependence of the electrical resistance and thermopower of La2? xSrxCuO4+δ single crystals with x ? 0.003 and δ<0.05 has been studied in the temperature range from 100 to 400 K. All crystals exhibiting two-dimensional hopping conductivity via neighboring acceptor sites in the CuO2 plane show a significant difference in the charge transfer below and above the Néel temperature TN. This difference indicates that the loss of a two-sublattice antiferromagnetic order strongly affects the charge transport in the CuO2 plane. The obtained data lead to a conclusion that the crystal above TN occurs in a resonance valence bond state of the Bose type.  相似文献   

8.
It is shown that one-particle spectra of the lower Hubbard band of bilayer correlated 2D systems with different relative alignments of the spin systems in the layers differ significantly. In particular, the bilayer band splitting differs from zero for identically directed alternating spins of different layers (F z configuration), but tends to zero for antiparallel alignment (AF z configuration). It is found that the type of the alignment of the ground state changes upon an increase in the doping δ from the lower AF z configuration to the F z configuration of the alignment observed for large values of δ. The behavior of bilayer splitting in Bi2Sr2CaCu2O8+δ suggests that the configuration of the alignment may change from F z AF z simultaneously with the superconducting transition. The effects associated with the influence of spin alignment on the magnetic excitation spectrum as a method of studying the spin structure of bilayer systems are considered for homogeneous solutions of effective spin models.  相似文献   

9.
The mechanism of hole carrier generation is considered in the framework of a model assuming the formation of negative U centers (NUCs) in HTSC materials under doping. The calculated dependences of carrier concentration on the doping level and temperature are in quantitative agreement with experiment. An explanation is proposed for the pseudogap and 60 K phases in YBa2Cu3O6+δ. It is assumed that a pseudogap is of superconducting origin and arises at temperature T* > Tc∞ > Tc in small nonpercolating clusters as a result of strong fluctuations in the occupancy of NUCs (Tc∞ and Tc are the superconducting transition temperatures of an infinitely large and finite NUC clusters, respectively). The T*(δ) and Tc(δ) dependences calculated for YBa2Cu3O6+δ correlate with experimental dependences. In accordance with the model, the region between T*(δ) and Tc(δ) is the range of fluctuations in which finite nonpercolation clusters fluctuate between the superconducting and normal states due to NUC occupancy fluctuations.  相似文献   

10.
Peculiarities of the chemical structure of bulk polycrystalline samples of the high-temperature superconductors Bi2Sr2CaCu2O8, BiSrCaCu2O5.5, BiSrCaCu3O8, and YBa2Cu3O7 ? δ have been investigated in detail at room and superconducting temperatures on an X-ray electron magnetic spectrometer equipped with an attachment for low-temperature studies. It is shown that covalent bonding is formed at a superconducting temperature between copper and oxygen due to Cu2+ ions. Due to the enhancement of the d(Cu)–p(O) hybridization of copper and oxygen electrons in the superconducting state, the d-electron density increases near E F. The occurrence of additional peaks in the O1s and Sr3d (Ba3d) spectra after transition of the system to the superconducting state indicates changes in the nearest environment of O and Sr (Ba) atoms, in particular, the transition of Sr atoms to a higher oxidation state.  相似文献   

11.
The anisotropy in the superconducting properties of single-crystal Nd1.85Ce0.15CuO4 was studied from measurements of the heat capacity within the temperature interval 2–40 K in zero magnetic field and in a magnetic field of 8 T. We report on the first observation of heat capacity jumps occurring at the superconducting transition for various magnetic field orientations with respect to the crystallographic axes and on a strong anisotropy of the magnetic contribution to heat capacity in magnetic fields oriented in the a-b plane and perpendicular to it. These measurements yielded the anisotropy in the electronic heat capacity coefficient γn(H) and in the superconducting transition temperature Tc(H). The angular dependence of the Sommerfeld coefficient γn in the a-b plane observed in a magnetic field of 8 T exhibits four-lobe symmetry and zero gap direction of the order parameter. A comparison of the results obtained on the Nd1.85Ce0.15CuO4 single crystal with the data available for La1.85Sr0.15CuO4 permits one to conclude that the mechanisms of superconductivity in the electron-and hole-doped superconductors are similar.  相似文献   

12.
Results of a comprehensive study of the interface interaction of a nanostructured CuOx and multiwalled carbon nanotubes (MWCNTs) in CuOx/MWCNT nanocomposite by X-ray absorption spectroscopy (XANES, NEXAFS) and X-ray photoelectron spectroscopy (XPS) methods using a synchrotron radiation are presented. It is established that a nanostructured CuOx in CuOx/MWCNT nanocomposite is predominantly formed by CuO and has the form of flakelike particles 200–500 nm in size uniformly dispersed over an array of nanotubes. A chemical interaction of CuOx and nanotubes with formation of covalent carbon–oxygen bonds, which does not lead to a significant destruction of the outer layers of carbon nanotubes, is observed at the interfaces of the nanocomposite.  相似文献   

13.
Hyperfine interactions on 57Fe nuclei in cubic perovskite Bi0.75Sr0.25FeO3 ? y in the temperature range 87–700 K are studied using Mössbauer spectroscopy. The temperature of the magnetic phase transition (the Neel point T N ) of bismuth ferrite is T N = 670(3) K. Below T N , the experimental spectra demonstrate a partially resolved magnetic hyperfine structure with broadened lines, which is well described by superposition of four sextets. The values of the hyperfine magnetic field B and the isomer shift δ at room temperature initiated that all iron ions are in the trivalent state. Here, three sextets with the equal isomer shifts (δ1 ≈ δ2 ≈ δ3 = 0.38 mm/s correspond to the iron ions in the octahedral oxygen environment; in the fourth sextet, the iron ions are in the square-pyramidal environment (δ3 = 0.25 mm/s).  相似文献   

14.
Helium ions were produced in then=4 states by electron collisions with ground state atoms, resulting in simultaneous ionization and excitation. Dipole transitions between the Zeeman levels of the states 42 S 1/2 and 42 P 1/2 were induced by a microwave electric field. The intensity of the emitted Fowlerα line 4686 Å, corresponding to transitions from then=4 to then=3 states was then reduced by about 3%. From the measurements, a value of the Lamb shiftδ=1751±25 MHz was obtained, compared with the theoretical valueδ=1768.23±0.55 MHz, and the results ofLea, Leventhal andLamb ofδ=1765±20 MHz.  相似文献   

15.
The dependence of the superconducting (Meissner) phase volume V m on the YBa2Cu3O6+δ doping level was studied. It was found that V m monotonically decreases as the doping level is lowered and vanishes at the same value of δ ~ 0.3 as Tc does. It was concluded that the Tc decrease and the increase in the pseudogap formation temperature T* as the doping level is lowered are caused by a decrease in the average size of superconducting clusters. This conclusion suggests an extraordinary superconductivity mechanism in HTSC.  相似文献   

16.
On the basis of the investigation of the temperature dependences of EXAFS spectra of the Ba1?x K x BiO3 superconducting oxide, a model of relationship between the local crystalline and electronic structures is proposed. It is found that oxygen ions vibrate in a double-well potential and their vibrations are correlated with the local electron pair transfer. Analogous specific features are also observed in the EXAFS spectra of La2?x Sr x CuO4, which gives grounds to extend the proposed model to Cu-based superconductors. The model based on the unified approach makes it possible to explain the ground antiferromagnetic state, the insulator-metal transition, and the occurrence of superconductivity upon doping of La2CuO4 with strontium.  相似文献   

17.
The properties of bismuth triselenide (Bi2Se3) are already known to a certain extent through the work of several authors, while it was still an open question whether there exists an individual solid phase of BiSe. Further information on this subject could be obtained by the successful growth and investigation of single crystals of both Bi2Se3 and Bi2Se2. X-ray analysis by means of goniometry, Weißenberg, Laue, and Debye-Scherrer diagrams confirmed the known crystal structure of Bi2Se3 (ditrigonal scalenohedral;D 3d 5 ?Rm; with the hexagonal axes:a=4·15 Å andc=28·55 Å, and 3 molecules per unit cell). As to Bi2Se2 it can be shown that it belongs to the same class but to a different space group (D 3d 1 ?P— 1m orD 3d 3 ?Pm 1; hexagonal axes:a=4·15 Å,c=22·84 Å, unit cell: 3 molecules, if the formula Bi2Se2 is adopted). Common to both is a subcell with the dimensions:a′=a=4·15 Å andc′=5·71 Å. The temperature dependence of electrical conductivity and Hall coefficient was measured on several specimens having different crystal orientations. The most striking difference is the high anisotropy of Bi2Se3 a σ c =10) as compared with Bi2Se2 a c <2). All specimens turned out to ben-type. The room temperature carrier concentration observed was:n (Bi2Se3)=8·1018 cm?3 andn (Bi2Se2)=4·1020 cm?3, the carrier mobility:μ(Bi2Se3)=2·103 cm2/V·s andμ(Bi2Se3)=20 cm2/V·s.  相似文献   

18.
The special features of the phase diagrams of La2?xSrxCuO4 are considered in terms of the high-temperature superconductivity model according to which the mechanism responsible for the anomalous properties of these compounds is the interaction of electrons with diatomic negative U-centers. A microstructural model that assumes the coexistence of domains with different types of dopant ion ordering is suggested for La2?xSrxCuO4. According to this model, the main characteristics of the experimental phase diagrams of La2?xSrxCuO4 only reflect square lattice geometric relations and competition between different dopant ordering types. Close agreement between the calculated and experimental “superconducting” and “magnetic” phase diagrams is an important argument in favor of the suggested high-temperature superconductivity model.  相似文献   

19.
We study Glauber dynamics for the Ising model on the complete graph on n vertices, known as the Curie-Weiss Model. It is well known that at high temperature (β<1) the mixing time is Θ(nlog?n), whereas at low temperature (β>1) it is exp?(Θ(n)). Recently, Levin, Luczak and Peres considered a censored version of this dynamics, which is restricted to non-negative magnetization. They proved that for fixed β>1, the mixing-time of this model is Θ(nlog?n), analogous to the high-temperature regime of the original dynamics. Furthermore, they showed cutoff for the original dynamics for fixed β<1. The question whether the censored dynamics also exhibits cutoff remained unsettled.In a companion paper, we extended the results of Levin et al. into a complete characterization of the mixing-time for the Curie-Weiss model. Namely, we found a scaling window of order \(1/\sqrt{n}\) around the critical temperature β c =1, beyond which there is cutoff at high temperature. However, determining the behavior of the censored dynamics outside this critical window seemed significantly more challenging.In this work we answer the above question in the affirmative, and establish the cutoff point and its window for the censored dynamics beyond the critical window, thus completing its analogy to the original dynamics at high temperature. Namely, if β=1+δ for some δ>0 with δ 2 n→∞, then the mixing-time has order (n/δ)log?(δ 2 n). The cutoff constant is (1/2+[2(ζ2 β/δ?1)]?1), where ζ is the unique positive root of g(x)=tanh?(β x)?x, and the cutoff window has order n/δ.  相似文献   

20.
The band structure and evolution of the Fermi surfaces of stripe phases were studied using the t-t′-U Hubbard model in the mean field approximation. The appearance of quasi-one-dimensional “impurity” subbands caused by the localization of particles on domain walls inside the Hubbard gap is confirmed. Among vertical stripe phases parallel to y bonds, the Y8 and Y4 structures with distances l = 8a and 4a between domain walls were found to be stable. Fermi surface segments in antinodal or nodal directions were shown to correspond to an “ impurity” band or the main band related to the entire antiferromagnetic domain region. This is a probable explanation of the difference in the properties of ARPES spectra at different Fermi surface regions observed for La2?xSrxCuO4. It was shown for the Y8 structure that the topology of the Fermi surface changed and an isotropic pseudogap opened at the point corresponding to a p = 1/8 doping level. Attempts at relating this property to the anomalous suppression of T c in LSCO at p = 1/8 encountered difficulties. The low dispersion of the impurity band and the wide gap separating it from the lower Hubbard band in diagonal stripe phases formed at p < 0.05 create prerequisites for the existence of the insulating state at nonzero doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号