首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 727 毫秒
1.
A 100 kV Z-pinch, pulse-filled with high-density xenon gas, is used as radiation source for photoionizing hydrogen or rare gases at filling pressures of 1–10 mtorr. This produces a homogeneous, magnetic field free, highly ionized (degree of ionization ≈10% in H2 and ≈ 20% in Ar) plasma suitable for example, for collisionless shock wave experiments. Experimental and theoretical investigations have yielded information on the conversion of the stored electrical energy into radiation energy. As a result of fast magnetic compression and ohmic heating (the relatively low temperature of max. 6 eV due to multiple ionization of the xenon atoms being favourable) the xenon pinch absorbs 30% of the stored electrical energy. Investigation of the matching of the external circuit to theZ-pinch by means of the snowplow model shows that the energy transmission efficiency could be increased about 50% if the current half-cycle is made equal to the compression time. The suitability of the xenon pinch as a radiation source is due on the one hand, to the almost complete conversion of the absorbed energy into radiation and, in particular, to the spectral distribution of the radiation, which is favourable for the ionization of hydrogen. It is found that the radiation is mainly emitted in lines with maximum intensity at the same wavelength λ ≈ 700 Å as the maximum of the photoionization cross section owing to the low temperature of the xenon plasma.  相似文献   

2.
In the 11.8–13.8 eV energy range differential threshold and energy loss spectra of electrons scattered by N2 molecules have been obtained at an incident energy of 14.3 eV and with a 30 meV experimental resolution. The study of the angular behaviour of the observed peaks permits us to distinguish between singlet-singlet and singlet-triplet transitions. The predicted F3Πu and G3Πu Rydberg states are observed. Also some levels of unknown triplet states are seen at 13.155, 13.395 and 13.635 eV.  相似文献   

3.
The spectra of three sets of optical functions for SrTiO3 crystals are determined in a broad energy range of fundamental absorption. The calculations are carried out using the experimental reflectivity spectrum in the range 1–35 eV and two theoretical permittivity spectra in the ranges 0–30 eV and 0–14 eV. The special features of these spectra have been determined. The theoretical spectra of the optical functions are compared with the spectra determined using the experimental reflectivity spectrum.  相似文献   

4.
Porous aluminum (Al 99.99%) foil membranes prepared by electrochemical anodizing and subsequent removing the continuous barrier layer by ion-plasma irradiation are described. As a result, Al2O3 membranes about 2–5 μm thick with regular arrangement of channels have been obtained. The possibility has been shown of regulation of a channel diameter in a range of 20–100 nm by changing the oxidation conditions. The experimental dependences of Al and Al2O3 sputtering coefficients on the xenon ion energy (100–400 eV) and the angle of incidence have been obtained.  相似文献   

5.
The physisorption of Xe on W(111) and of Xe on partial layers of oxygen chemisorbed on W(111) has been studied using flash desorption and work function methods. It has been found that xenon adsorbs up to monolayer coverages at 104K. Xenon desorbs from W(111) as a single binding state following first order kinetics. At low coverages (θXe < 0.07) the binding energy decreases with increasing coverage possibly because of the presence of high energy adsorption sites due to crystal imperfections and edge effects. For θXe > 0.07 the desorption data fit a first order rate expression with a desorption energy of 9.3 kcal/mol and preexponential ν = 1015s?1. The observed work function change of ?1.1 ± 0.1 eV is consistent with monolayer estimates reported in field emission studies of physisorbed xenon on tungsten. The effect of preadsorbed oxygen layers on the physisorption of xenon on this surface is very striking. The energy of desorption shifts as much as 50% higher for a moderate exposure of oxygen. Several physisorption models are explored along with estimates of dispersion and electrostatic interaction contributions.  相似文献   

6.
This paper reports preliminary results obtained on an experimental apparatus dedicated to the study of angular resolved energy distribution of particles emitted from a sputtered target. Secondary ions emitted during the bombardment of a silicon target by xenon ions at a primary energy of 10keV have been studied. In its low energy part the distribution reaches a maximum around 8eV, and then decreases according to an E –1 law. In the range 200eV to 1000eV, a second maximum appears whose height depends on the emission angle. Apart from this range, the angular distributions have a cosine square-like shape. On the contrary, the angular distribution of ions with energy between 200eV and 1000eV is pointed in a forward direction near the specular reflection direction of the ion beam. It is assumed that the measured ions correspond to two ionic populations: secondary ions sputtered according to the linear cascade theory and recoil silicon target ions.  相似文献   

7.
Electron energy loss spectroscopy (ELS) in the energy range of electronic transitions (primary energy 30 < E0 < 50 eV, resolution ΔE ≈ 0.3 eV) has been used to study the adsorption of CO on polycrystalline surfaces and on the low index faces (100), (110), (111) of Cu at 80 K. Also LEED patterns were investigated and thermal desorption was analyzed by means of the temperature dependence of three losses near 9, 12 and 14 eV characteristic for adsorbed CO. The 12 and 14 eV losses occur on all Cu surfaces in the whole coverage range; they are interpreted in terms of intramolecular transitions of the CO. The 9 eV loss is sensitive to the crystallographic type of Cu surface and to the coverage with CO. The interpretation in terms of d(Cu) → 2π1(CO) charge transfer transitions allows conclusions concerning the adsorption site geometry. The ELS results are consistent with information obtained from LEED. On the (100) surface CO adsorption enhances the intensity of a bulk electronic transition near 4 eV at E0 < 50 eV. This effect is interpreted within the framework of dielectric theory for surface scattering on the basis of the Cu electron energy band scheme.  相似文献   

8.
Cross sections for production of multiple charged xenon ions (Xen+, n=2–9) by electron collision are presented in the 100–2500 eV impact energy range. We determinate the apparent ionization thresholds and the integrated oscillator strengths for the reactions. The present values are compared with available data from experimental groups using diverse techniques.  相似文献   

9.
The optical properties of EuGa2S4 and EuGa2S4:Co single crystals in a range of temperatures from 77 to 300 K are investigated. The single crystals are obtained by the Bridgman method and are characterized by tetragonal syngony. The behavior of the optical transitions in the photon energy range 1.70–2.45 eV and the temperature range 77–300 K is determined. It is established that in the energy range 1.77–1.90 eV absorption is associated with transitions of the Co2+ ion, while in the range 2.20–2.40 eV, with indirect allowed optical transitions.  相似文献   

10.
The optical reflectivity of the red bronze K0.33MoO3 has been measured on single crystals in the spectral energy range between 0.03 and 12 eV at temperatures from 4 K to 300 K using polarized light. The optical constants have been determined by means of a Kramers-Kronig analysis; the data are interpreted that this compound is a 0.5 eV energy gap semiconductor with very strong anisotropy in the infrared and visible energy range.  相似文献   

11.
The energy loss functions Im—(1/?) of amorphous and polycrystalline Selenium and Tellurium are determined from energy loss spectra of 60 keV electrons in the energy range up to 30 eV. The optical constants ?1 and ?2 are calculated from the energy loss function by Kramers Kronig analysis. The energy difference in the position of the volume plasma loss of amorphous and polycrystalline foils is compared with the calculated change in free electron plasma energy resulting from density change. Characteristic structure dependence of the optical constants are found to be similar for Selenium and Tellurium. They are discussed in terms of the results of band structure calculations.  相似文献   

12.
The absolute dipole oscillator strengths (cross-sections) for photoabsorption and photoionization (total and partial) of CS2 have been obtained in the 5–40 eV energy range by magic-angle dipole (e, 2e) spectroscopy. Very strong absorption is detected below 20 eV, much of which is attributable to the excitation of molecules decaying by autoionization processes. Analysis of binding energy spectra taken at energy losses above 20 eV reveals extensive satellite structure in the range up to 35 eV. This structure is attributed to many-electron effects consistent with theoretical calculations found in the literature. Photoelectron branching ratios for CS2 are also reported.  相似文献   

13.
The adsorption of xenon has been studied with UV photoemission (UPS), flash desorption (TDS) and work function measurements on differently conditioned Ru(0001) surfaces at 100 K and at pressures up to 3 × 10?5 Torr. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) served to ascertain the surface perfectness. On a perfect Ru(0001) surface only one Xe adsorption state is observed, which is characterized byXe5p32,12 electron binding energies of 5.40 and 6.65 eV, an adsorption energy of Ead≈ 5 kcal/mole and dipole moment of μ'T ≈ 0.25 D. On a stepped-kinked Ru(0001) surface, the terrace-width, the step-height and step-orientation of which are well characterized with LEED, however, two coexisting xenon adsorption states are distinguishable by an unprecedented separation inXe 5p32,12 electron binding energies of 800 meV, by their different UPS intensities and line shapes, by their difference in adsorption energy ofΔEad ≈ 3 kcal/mole and finally by their strongly deviating dipole moments of μS = 1.0 D and μT = 0.34 D. The two xenon states (which are also observed on a slightly sputtered surface) are identified as corresponding to xenon atoms being adsorbed at step and terrace sites, respectively. Their relative concentrations as deduced from the UPS intensities quantitatively correlate with the abundance of step and terrace sites of the ideal TLK surface structure model as derived from LEED. Furthermore, ledge-sites and kink-sites are distinguishable via Ead. The Ead heterogeneity on the stepped-kinked Ru(0001) surface is interpreted in terms of different coordination and/or different charge-transfer-bonding at the various surface sites. The enormous increase in Xe 5p electron binding energy of 0.8 eV for Xe atoms at step sites is interpreted as a pure surface dipole potential shift. —The observed effects suggest selective xenon adsorption as a tool for local surface structure determination.  相似文献   

14.
Optical properties of BiSBr and BiSeBr crystals were investigated by the full potential linearized augmented plane wave (FP-LAPW) method with density-functional theory (DFT). The complex dielectric function and optical constants, such as optical absorption coefficient, refractive index, extinction coefficient, energy-loss spectrum and reflectivity, were calculated and compared in the energy range of 0–30 eV. Origin of anisotropic behavior of optical spectra was also discussed. The plasmon energy ?ωp was estimated to be 18 eV for BiSeBr and 20 eV for BiSBr crystal.  相似文献   

15.
The ultraviolet photoelectron spectra of xenon adsorbed on crystals of (100) nickel and (110) iron have been measured as a function of xenon coverage. It is shown that the total current in the xenon peaks is a measure of the xenon coverage but that the attenuation of the electrons from the metal substrate is dependent on the packing density of xenon on the surface. Previous measurements by Auger electron spectroscopy are compared and it is shown that the mean free path of 16 eV electrons from the d-bands of nickel and iron is 2.75 times that of 60 eV Auger electrons. The data allows the calculation according to a slab model of a mean thickness of a xenon monolayer. This is interpreted as a measure of the packing density of xenon localized on metal lattices of varying dimensions. The UPS spectrum for xenon on (110) iron shows a marked broadening of the xenon peaks as compared to (100) nickel. This is interpreted as due to variation in relaxation energy over adsorbate states on the iron surface arising from xenon atoms in offsite positions.  相似文献   

16.
We performed measurements of the optical reflectivity in the energy range 0.007–30 eV on the clathrate-VIII type compound α-Eu8Ga16- xGe30 x in order to investigate its electronic band structure. The very low charge carrier concentration as well as ferromagnetic ordering of the divalent Eu ions below 10.5 K characterize the spectra at photon energies below ≃0.4 eV in accordance with the results of band structure calculations. Disorder induced bound states have been identified to affect the optical conductivity at energies between 10 and 100 meV.  相似文献   

17.
The energy loss spectra of 30-keV Li7 + ions after interaction with argon and ethylene have been studied. Wien filters were used as monochromator and energy analyzer, an energy resolution of 0.2 eV was achieved. The ion energy loss spectra obtained differ from those taken with electrons at the same primary energy mainly in two points: In the ion spectra energy losses are found with strong intensities corresponding to optically forbidden transitions which are not excited by fast electrons. Furthermore in the energy range beyond the first ionization limit energy losses appear which are due to charge transfer into excited states of the lithium atom and re-ionization.  相似文献   

18.
The removal of a lead film from graphene by irradiating a target with a beam of xenon clusters at an incidence angle of 60° was studied by the molecular dynamics method. The complete purification of graphene was achieved at beam energies of 10 and 15 eV. Visual observation and the calculated density profiles and mobility components of the lead atoms indicate the predominantly collective nature of the separation of Pb from graphene in the course of bombardment. When a beam of clusters with an energy of 15 eV acts on the target, the detached film of lead takes a torch shape and has strong internal stresses. The graphene sheet acquires maximum roughness at a beam energy of 10 eV as a result of a large number of the direct hits of xenon clusters on its surface.  相似文献   

19.
The optical functions of iron disilicide (β-FeSi2) thin epitaxial films are calculated from the reflectance spectra in the energy range 0.1–6.2 eV with the use of the Kramers-Kronig (KK) integral relations. A comparison of the results of calculations from the transmittance and reflectance spectra and the data obtained from the reflectance spectra in terms of the Kramers-Kronig relations indicates that the fundamental transition at an energy of 0.87±0.01 eV is a direct transition. An empirical model is proposed for the dielectric function of β-FeSi2 epitaxial films. Within this model, the specific features in the electronic energy-band structure of the epitaxial films are described in an analytical form. It is shown that the maximum contributions to the dielectric function and the reflectance spectrum in the energy range 0.9–1.2 eV are made by the 2D M 0-type second harmonic oscillator with an energy of 0.977 eV. This oscillator correlates with the second direct interband transition observed in the energy-band structure of β-FeSi2.  相似文献   

20.
The thermodynamic properties of the adsorption of xenon on the stepped Pd(s)[8(100)×(110)] surface have been studied over a wide range of pressure (5×10?11 to 1×10?4 Torr) and temperature (40–140 K). We have measured adsorption isobars using AES in order to evaluate the surface coverage. By choosing pressure and temperature we have studied under equilibrium conditions, the successive adsorption of xenon on the steps and on the terraces until the first layer is formed, the condensation of the second layer as well as the formation of xenon multilayers. For a small range of pressure and temperature, adsorption takes place only on the atomic steps. The LEED pattern shows that only every other site along the steps is occupied. The extrapolated initial heat of adsorption for steps is EadS = 10.2 kcal/mol, decreasing monotonically by about 2 kcal/mol as the relative coverage of the step sites increases. The dipole moment of the Xe atoms adsorbed on steps is 1.12 D. During adsorption on the terraces the LEED observations suggest that the xenon adlayer is non-localized up to completion of the hexagonally close packed monolayer. The initial heat of adsorption on the terraces, EadT is 8.2 kcal/mol and decreases continuously to a value of 6.9 kcal/mol for a complete monolayer due to lateral repulsive interactions between the adsorbed xenon atoms. The induced dipole moment of Xe on terraces is reduced to 0.49 D. The 5p12 binding energy of Xe adsorbed on terrace sites is 0.3 eV smaller than that of Xe occuping step sites. The differential molar entropy of the adsorbed layer on the terraces as a function of coverage compares fairly well with the calculated value for an ideally mobile two-dimensional gas. No indication of the growth of two-dimensional xenon islands has been found under these conditions. The isosteric heat of adsorption for the second layer is Eadsec = 5.8 kcal/mol independently of the coverage. The condensation of the second layer is a first order two-dimensional gas ? two-dimensional solid phase transition in opposition to the continuous nature of the adsorption of the first layer (extending over a wide range of temperature for a given pressure). The induced dipole moment is further reduced for the Xe second layer to a value of 0.11 D. Finally, the condensation of multilayers proceeds with a latent heat of transformation of Econd = 3.8 kcal/mol in excellent agreement with the known bulk value for the heat of sublimation of xenon. The line shape of the NVV low energy Auger transitions of xenon or the UPS binding energies of the Xe 5p32,12 spectra allow a clear distinction between first, second and higher layer Xe atoms. We have also established the temperature/pressure conditions for equilibrium between first, second and bulk xenon layers, i.e. a so-called “roughening point”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号