首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We refer [1] to the role of an additional O(1) eV sterile neutrino in modified gravity models. We find parameter constraints in particular f(R) gravity model using following up-to-dated cosmological data: measurements of the cosmic microwave background (CMB) anisotropy, the CMB lensing potential, the baryon acoustic oscillations (BAO), the cluster mass function and the Hubble constant. It was obtained for the sterile neutrino mass 0.47 eV < m ν,sterile < 1 eV (2σ) assuming that the sterile neutrinos are thermalized and the active neutrinos are massless, not significantly larger than in the standard cosmology model within the same data set: 0.45 eV < m ν,sterile < 0.92 eV (2σ). But, if the mass of sterile neutrino is fixed and equals ≈ 1.5 eV according to various anomalies in neutrino oscillation experiments, f(R) gravity is much more consistent with observation data than the CDM model.  相似文献   

2.
In this work, we use the maximum entropy principle (MEP) to infer the mass of an axion which interacts to photons and neutrinos in an effective low energy theory. The Shannon entropy function to be maximized is defined in terms of the axion branching ratios. We show that MEP strongly constrains the axion mass taking into account the current experimental bounds on the neutrinos masses. Assuming that the axion is massive enough to decay into all the three neutrinos and that MEP fixes all the free parameters of the model, the inferred axion mass is in the interval 0.1 eV < m A < 0.2 eV, which can be tested by forthcoming experiments such as IAXO. However, even in the case where MEP fixes just the axion mass and no other parameter, we found that 0.1 eV < m A < 6.3 eV in the DFSZ model with right-handed neutrinos. Moreover, a light axion, allowed to decay to photons and the lightest neutrino only, is determined by MEP as a viable dark matter candidate.  相似文献   

3.
Recently, a new dark energy model called ΛHDE was proposed. In this model, dark energy consists of two parts: cosmological constant Λ and holographic dark energy(HDE). Two key parameters of this model are the fractional density of cosmological constant ?_(Λ0), and the dimensionless HDE parameter c. Since these two parameters determine the dynamical properties of DE and the destiny of universe, it is important to study the impacts of different values of ?_(Λ0) and c on the ΛHDE model. In this paper,we apply various DE diagnostic tools to diagnose ΛHDE models with different values of ?_(Λ0) and c; these tools include statefinder hierarchy{S_3~(1), S_4~(1)}, fractional growth parameter ?, and composite null diagnostic(CND), which is a combination of{S_3~(1), S_4~(1)}and ?. We find that:(1) adopting different values of ?_(Λ0) only has quantitative impacts on the evolution of the ΛHDE model, while adopting different c has qualitative impacts;(2) compared with S_3~(1), S_4~(1) can give larger differences among the cosmic evolutions of the ΛHDE model associated with different ?_(Λ0) or different c;(3) compared with the case of using a single diagnostic, adopting a CND pair has much stronger ability to diagnose the ΛHDE model.  相似文献   

4.
The Sandage-Loeb(SL) test is a promising method for probing dark energy because it measures the redshift drift in the spectra of Lyman-α forest of distant quasars, covering the "redshift desert" of 2 z 5, which is not covered by existing cosmological observations. Therefore, it could provide an important supplement to current cosmological observations. In this paper, we explore the impact of SL test on the precision of cosmological constraints for two typical holographic dark energy models, i.e., the original holographic dark energy(HDE) model and the Ricci holographic dark energy(RDE) model. To avoid data inconsistency, we use the best-fit models based on current combined observational data as the fiducial models to simulate 30 mock SL test data. The results show that SL test can effectively break the existing strong degeneracy between the present-day matter density ?_(m0) and the Hubble constant H0 in other cosmological observations. For the considered two typical dark energy models, not only can a30-year observation of SL test improve the constraint precision of ?_(m0) and h dramatically, but can also enhance the constraint precision of the model parameters c and α significantly.  相似文献   

5.
The Hubble constant H_0 represents the expansion rate of the Universe at present and is closely related to the age of the Universe.The accurate measurement of Hubble constant is crucial for modern cosmology.However,different cosmological observations give diverse values of Hubble constant in literature.Up to now,there are two methods to measure the Hubble constant.One is to directly measure the Hubble constant based on distance ladder estimates of Cepheids and so on.The other is to globally fit the Hubble constant under the assumption of a cosmological model,for example the "standard" ACDM model.Adopting the low-redshift observational datasets,including the Pantheon sample of Type Ⅰa supernovae,baryon acoustic oscillation measurements,and the tomographic Alcock-Paczynski method,we determine the Hubble constant to be 67.95_(-1.03)~(+0.78),69.81_(-2.70)~(+2.22) and66.75_(-4.23)~(+3.42) km s~(-1) Mpc~(-1) at 68% confidence level in the △CDM,wCDM and W_0W_a CDM models,respectively.Compared to the Hubble constant given by Riess et al.in 2019,we conclude that the new physics beyond the standard △CDM model is needed if all of these datasets are reliable.  相似文献   

6.
We reconsider the holographic dark energy (HDE) model with a slowly time varying c 2(z) parameter in the energy density, namely \(\rho _{D}=3{M_{p}^{2}} c^{2}(z)/L^{2}\), where L is the IR cutoff and z is the redshift parameter. As the system’s IR cutoff we choose the Hubble radius and the Granda-Oliveros (GO) cutoffs. The latter inspired by the Ricci scalar curvature. We derive the evolution of the cosmological parameters such as the equation of state and the deceleration parameters as the explicit functions of the redshift parameter z. Then, we plot the evolutions of these cosmological parameters in terms of the redshift parameter during the history of the universe. Interestingly enough, we observe that by choosing L = H ?1 as the IR cutoff for the HDE with time varying c 2(z) term, the present acceleration of the universe expansion can be achieved, even in the absence of interaction between dark energy and dark matter. This is in contrast to the usual HDE model with constant c 2 term, which leads to a wrong equation of state, namely that for dust w D =0, when the IR cutoff is chosen the Hubble radius.  相似文献   

7.
We present effective Majorana neutrino mass limits <m ββ> obtained from the joint analysis of the recently published results of 76Ge and 136Xe neutrinoless double beta decay (0νββ) experiments, which was carried out by using the Bayesian calculations. Nuclear matrix elements (NMEs) used for the analysis are taken from the works, in which NMEs of 76Ge and 136Xe were simultaneously calculated. This reduced systematic errors connected with NME calculation techniques. The new effective Majorana neutrino mass limits <m ββ> less than [85.4–197.0] meV are much closer to the inverse neutrino mass hierarchy region.  相似文献   

8.
Double beta decay is indispensable to solve the question of the neutrino mass matrix together with ν oscillation experiments. The most sensitive experiment - since eight years the HEIDELBERG-MOSCOW experiment in Gran-Sasso - already now, with the experimental limit of mν < 0.26 eV practically excludes degenerate ν mass scenarios allowing neutrinos as hot dark matter in the universe for the smallangle MSW solution of the solar neutrino problem. It probes cosmological models including hot dark matter already now on the level of future satellite experiments MAP and PLANCK. It further probes many topics of beyond SM physics at the TeV scale. Future experiments should give access to the multi-TeV range and complement on many ways the search for new physics at future colliders like LHC and NLC. For neutrino physics some of them (GENIUS) will allow to test almost all neutrino mass scenarios allowed by the present neutrino oscillation experiments.  相似文献   

9.
Considering the mass splittings of three active neutrinos, we investigate how the properties of dark energy affect the cosmological constraints on the total neutrino mass $\sum {m}_{\nu }$ using the latest cosmological observations. In this paper, several typical dark energy models, including ΛCDM, wCDM, CPL, and HDE models, are discussed. In the analysis, we also consider the effects from the neutrino mass hierarchies, i.e. the degenerate hierarchy (DH), the normal hierarchy (NH), and the inverted hierarchy (IH). We employ the current cosmological observations to do the analysis, including the Planck 2018 temperature and polarization power spectra, the baryon acoustic oscillations (BAO), the type Ia supernovae (SNe), and the Hubble constant H0 measurement. In the ΛCDM+$\sum {m}_{\nu }$ model, we obtain the upper limits of the neutrino mass $\sum {m}_{\nu }\lt 0.123\,\mathrm{eV}$ (DH), $\sum {m}_{\nu }\lt 0.156\,\mathrm{eV}$ (NH), and $\sum {m}_{\nu }\lt 0.185\,\mathrm{eV}$ (IH) at the 95% C.L., using the Planck+BAO+SNe data combination. For the wCDM+$\sum {m}_{\nu }$ model and the CPL+$\sum {m}_{\nu }$ model, larger upper limits of $\sum {m}_{\nu }$ are obtained compared to those of the ΛCDM+$\sum {m}_{\nu }$ model. The most stringent constraint on the neutrino mass, $\sum {m}_{\nu }\lt 0.080\,\mathrm{eV}$ (DH), is derived in the HDE+$\sum {m}_{\nu }$ model. In addition, we find that the inclusion of the local measurement of the Hubble constant in the data combination leads to tighter constraints on the total neutrino mass in all these dark energy models.  相似文献   

10.
The mechanism of broken mirror symmetry may be the reason behind the appearance of the observed weak-mixing matrix for leptons that has a structure involving virtually no visible regularities (flavor riddle). Special features of the Standard Model such as the particle-mass hierarchy and the neutrino spectrum deviating from the hierarchy prove here to be necessary conditions for reproducing a structure of this type. The inverse character of the neutrino spectrum and a small value of the mass m 3 are also mandatory. The smallness of the angle θ 13 is due precisely to the smallness of the mass ratios in the hierarchical lepton spectrum. The emergence of distinctions between the neutrino spectrum and the spectra of other Standard Model fermions is explained. The inverse character of the neutrino spectrum and the observed value of θ 13 make it possible to estimate the absolute values of their masses as m 1m 2 ≈ 0.05 eV and m 3 ≈ 0.01 eV.  相似文献   

11.
A method for detecting dark matter axions in which a dc SQUID serves as a detector is proposed. The SQUID is shown to be able to detect the magnetic field perturbations induced by its interaction with axions. The resonance signal appears as a current step in the SQUID current–voltage characteristic. The voltage of the step corresponds to the axion mass, while its height depends on the axion energy density in near-Earth space. The proposed method is aimed at detecting axions with masses ma ? 10–4 eV, which are of interest for both cosmology and particle physics.  相似文献   

12.
The relic abundance of light millicharged particles (MCPs) with the electric charge e′ = 5 × 10–5 e and with the mass slightly below or above the electron mass is calculated. The abundance depends on the mass ratio η = m X /m e and for η < 1 can be high enough to allow MCPs to be the cosmological dark matter or to make a noticeable contribution to it. On the other hand, for η ? 1 the cosmological energy density of MCPs can be quite low, Ω X h 0 2 ≈ 0.02 for scalar MCPs, and Ω X h 0 2 ≈ 0.001 for spin 1/2 fermions. But even the lowest value of Ω X h 0 2 is in tension with several existing limits on the MCP abundances and parameters. However, these limits have been derived under some natural or reasonable assumptions on the properties of MCPs. If these assumptions are relaxed, a patch in the mass–charge plot of MCPs may appear, permitting them to be dark matter particles.  相似文献   

13.
YONG-YEON KEUM 《Pramana》2016,86(2):437-451
We investigate the way the total mass sum of neutrinos can be constrained from the neutrinoless double beta-decay and cosmological probes with cosmic microwave background (CMBR), large-scale structures including 2dFGRS and SDSS datasets. First we discuss, in brief, the current status of neutrino mass bounds from neutrino beta decays and cosmic constraint within the flat ΛCMD model. In addition, we explore the interacting neutrino dark-energy model, where the evolution of neutrino masses is determined by quintessence scalar field, which is responsible for cosmic acceleration. Assuming the flatness of the Universe, the constraint we can derive from the current observation is \(\sum m_{\nu } < 0.87\) eV at 95% confidence level, which is consistent with \(\sum m_{\nu } < 0.68\) eV in the flat ΛCDM model without Lyman alpha forest data. In the presence of Lyman- α forest data, interacting dark-energy models prefer a weaker bound \(\sum m_{\nu } < 0.43\) eV to \(\sum m_{\nu } < 0.17\) eV (Seljark et al). Finally, we discuss the future prospect of the neutrino mass bound with weak-lensing effects.  相似文献   

14.
The demands on the future supersensitivity 2β-decay experiments (aiming to observe neutrinoless 2β decay or to advance restrictions on the neutrino mass to mν≤0.01 eV) are considered and requirements for their discovery potential are formulated. The most realistic 2β projects are reviewed and the conclusion is obtained that only several of them with high energy resolution would completely satisfy these severe demands and requirements. At the same time, most of the recent projects (CAMEO, CUORE, DCBA, EXO, etc.) could certainly advance the limit on the neutrino mass up to mν≤0.05 eV.  相似文献   

15.
We report the result of a search for sterile neutrinos with the latest cosmological observations. Both cases of massless and massive sterile neutrinos are considered in the \(\Lambda \)CDM cosmology. The cosmological observations used in this work include the Planck 2015 temperature and polarization data, the baryon acoustic oscillation data, the Hubble constant direct measurement data, the Planck Sunyaev–Zeldovich cluster counts data, the Planck lensing data, and the cosmic shear data. We find that the current observational data give a hint of the existence of massless sterile neutrino (as dark radiation) at the 1.44\(\sigma \) level, and the consideration of an extra massless sterile neutrino can indeed relieve the tension between observations and improve the cosmological fit. For the case of massive sterile neutrino, the observations give a rather tight upper limit on the mass, which implies that actually a massless sterile neutrino is more favored. Our result is consistent with the recent result of neutrino oscillation experiment done by the Daya Bay and MINOS collaborations, as well as the recent result of cosmic ray experiment done by the IceCube collaboration.  相似文献   

16.
The main purpose of this work is to distinguish various holographic type dark energy (DE) models, including the ΛHDE, HDE, NADE, and RDE model, by using various diagnostic tools. The first diagnostic tool is the Statefinder hierarchy, in which the evolution of Statefinder hierarchy parmeter S (1) 3(z) and S (1) 4(z) are studied. The second is composite null diagnostic (CND), in which the trajectories of {S (1) 3, ?} and {S (1) 4, ?} are investigated, where ? is the fractional growth parameter. The last is w-w′ analysis, where w is the equation of state for DE and the prime denotes derivative with respect to lna. In the analysis we consider two cases: varying current fractional DE density Ω de0 and varying DE model parameter C. We find that: (1) both the Statefinder hierarchy and the CND have qualitative impact on ΛHDE, but only have quantitative impact on HDE. (2) S (1) 4 can lead to larger differences than S (1) 3, while the CND pair has a stronger ability to distinguish different models than the Statefinder hierarchy. (3) For the case of varying C, the {w,w′} pair has qualitative impact on ΛHDE; for the case of varying Ω de0, the {w, w′} pair only has quantitative impact; these results are different from the cases of HDE, RDE, and NADE, in which the {w,w′} pair only has quantitative impact on these models. In conclusion, compared with HDE, RDE, and NADE, the ΛHDE model can be easily distinguished by using these diagnostic tools.  相似文献   

17.
The current results and future prospects of the 2β-decay research are reviewed. The requirements for supersensitivity experiments are formulated and a conclusion is derived that, in the developed CAMEO and GEM projects, the restrictions on the neutrino mass would be pushed down to mν≤(0.015–0.05) eV. Moreover, the GEM I setup with natural HPGe detectors could advance the best current limits on the existence of neutralinos—as dark matter candidates—by three order of magnitudes and, at the same time, would be able to identify unambiguously the dark matter signal by detection of its seasonal modulation.  相似文献   

18.
At present, cosmology provides the nominally strongest constraint on the masses of standard model neutrinos. However, this constraint is extremely dependent on the nature of the dark energy component of the Universe. When the dark energy equation of state parameter is taken as a free (but constant) parameter, the neutrino mass bound is sigma m(v) < or = 1.48 eV (95% C.L.), compared with sigma m(v) < or = 0.65 eV (95% C.L.) in the standard model where the dark energy is in the form of a cosmological constant. This has important consequences for future experiments aimed at the direct measurement of neutrino masses. We also discuss prospects for future cosmological measurements of neutrino masses.  相似文献   

19.
The Friedmann cosmological scenario in RTG (without inflation) is considered. The joint maximum-likelihood analysis of data on type Ia supernovae, the shift parameter of microwave radiation, and baryon acoustic oscillations from the Sloan catalogue of red galaxies provided tight fit constraints on the graviton mass and the space curvature in GR. It is demonstrated that the confidence interval for the graviton mass extends indefinitely if the quintessence parameter tends to zero. These conclusions are valid if the present scale factor a 0 >(2)?1/6= 0.89. At a 0 <(2)?1/6, a tight constraint on the graviton mass was derived from these observational data: m < 10–83 g. This implies that terms with the graviton mass may be neglected (with the exception of solutions of the black-hole type) in the gravitational field equations in a broad range of redshifts (0 < z < 1015).  相似文献   

20.
We consider the status of the Kr2Det project aimed at sensitive searches for neutrino oscillations in the atmospheric neutrino mass parameter region around Δm2 ~ 3×10?3 eV2 and at obtaining new information on the electron neutrino mass structure (Ue3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号