首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G protein-coupled receptors (GPCRs) which constitute one of the largest and most versatile families of cell surface receptors are involved in a wide spectrum of physiological functions, such as, neuronal transmission, chemotaxis, pacemaker activity and embryonic development. Therefore, in the past a few years GPCR families have become very important targets in pharmaceutical design. However, according to the human genome project, there are approximately 1000 genes encoding GPCRs, only about 200 of GPCRs have known ligands and functions. Searching for ligands of the unknown GPCRs and better modulators of known GPCRs are currently attracting lots of interest. High throughput screening (HTS), which is commonly defined as an automatic process of testing potential drug candidates efficiently, is widely used in drug discovery. In this review, the use of high throughput screening (HTS) in studying GPCRs and the choice of screening technology in different G-protein signaling pathways were summarized.  相似文献   

2.
Label-free cell-based assays for GPCR screening   总被引:1,自引:0,他引:1  
G protein-coupled receptors (GPCRs) have been proven to be the largest family of druggable targets in the human genome. Given the importance of GPCRs as drug targets and the de-orphanization of novel targets, GPCRs are likely to remain the frequent targets of many drug discovery programs. With recent advances in instrumentation and understanding of cellular mechanisms for the signals measured, biosensor-centered label-free cell assay technologies become a very active area for GPCR screening. This article reviews the principles and potential of current label-free cell assay technologies in GPCR drug discovery.  相似文献   

3.
The G-protein coupled receptor (GPCR) superfamily is one of the most important drug target classes for the pharmaceutical industry. The completion of the human genome project has revealed that there are more than 300 potential GPCR targets of interest. The identification of their natural ligands can gain significant insights into regulatory mechanisms of cellular signaling networks and provide unprecedented opportunities for drug discovery. Much effort has been directed towards the GPCR ligand discovery study by both academic institutions and pharmaceutical industries. However, the endogenous ligands still remain unknown for about 150 GPCRs in the human genome. It is necessary to develop new strategies to predict candidate ligands for these so-called orphan receptors. Computational techniques are playing an increasingly important role in finding and validating novel ligands for orphan GPCRs (oGPCRs). In this paper, we focus on recent development in applying bioinformatics approaches for the discovery of GPCR ligands. In addition, some of the data resources for ligand identification are also provided.  相似文献   

4.
Latest development in drug discovery on G protein-coupled receptors   总被引:1,自引:0,他引:1  
G protein-coupled receptors (GPCRs) represent the family of proteins with the highest impact from social, therapeutic and economic point of view. Today, more than 50% of drug targets are based on GPCRs and the annual worldwide sales exceeds 50 billion dollars. GPCRs are involved in all major disease areas such as cardiovascular, metabolic, neurodegenerative, psychiatric, cancer and infectious diseases. The classical drug discovery process has relied on screening compounds, which interact favorably with the GPCR of interest followed by further chemical engineering as a mean of improving efficacy and selectivity. In this review, methods for sophisticated chemical library screening procedures will be presented. Furthermore, development of cell-based assays for functional coupling of GPCRs to G proteins will be discussed. Finally, the possibility of applying structure-based drug design will be summarized. This includes the application of bioinformatics knowledge and molecular modeling approaches in drug development programs. The major efforts established through large networks of structural genomics on GPCRs, where recombinantly expressed GPCRs are subjected to purification and crystallization attempts with the intention of obtaining high-resolution structures, are presented as a promising future approach for tailor-made drug development.  相似文献   

5.
G-protein-coupled receptors (GPCRs) play important roles in physiological processes and are modulated by drugs that either activate or block signaling. Rational design of the pharmacological efficacy profiles of GPCR ligands could enable the development of more efficient drugs, but is challenging even if high-resolution receptor structures are available. We performed molecular dynamics simulations of the β2 adrenergic receptor in active and inactive conformations to assess if binding free energy calculations can predict differences in ligand efficacy for closely related compounds. Previously identified ligands were successfully classified into groups with comparable efficacy profiles based on the calculated shift in ligand affinity upon activation. A series of ligands were then predicted and synthesized, leading to the discovery of partial agonists with nanomolar potencies and novel scaffolds. Our results demonstrate that free energy simulations enable design of ligand efficacy and the same approach can be applied to other GPCR drug targets.  相似文献   

6.
G protein-coupled receptors (GPCRs) have been one of the most productive classes of drug targets for several decades, and new technologies for GPCR-based discovery promise to keep this field active for years to come. While molecular screens for GPCR receptor agonist- and antagonist-based drugs will continue to be valuable discovery tools, the most exciting developments in the field involve cell-based assays for GPCR function. Some cell-based discovery strategies, such as the use of beta-arrestin as a surrogate marker for GPCR function, have already been reduced to practice, and have been used as valuable discovery tools for several years. The application of high content cell-based screening to GPCR discovery has opened up additional possibilities, such as direct tracking of GPCRs, G proteins and other signaling pathway components using intracellular translocation assays. These assays provide the capability to probe GPCR function at the cellular level with better resolution than has previously been possible, and offer practical strategies for more definitive selectivity evaluation and counter-screening in the early stages of drug discovery. The potential of cell-based translocation assays for GPCR discovery is described, and proof-of-concept data from a pilot screen with a CXCR4 assay are presented. This chemokine receptor is a highly relevant drug target which plays an important role in the pathogenesis of inflammatory disease and also has been shown to be a co-receptor for entry of HIV into cells as well as to play a role in metastasis of certain cancer cells.  相似文献   

7.
G proteins mediate the action of G protein coupled receptors (GPCRs), a major target of current pharmaceuticals and a major target of interest in future drug development. Most pharmaceutical interest has been in the development of selective GPCR agonists and antagonists that activate or inhibit specific GPCRs. Some recent thinking has focused on the idea that some pathologies are the result of the actions of an array of GPCRs suggesting that targeting single receptors may have limited efficacy. Thus, targeting pathways common to multiple GPCRs that control critical pathways involved in disease has potential therapeutic relevance. G protein betagamma subunits released from some GPCRs upon receptor activation regulate a variety of downstream pathways to control various aspects of mammalian physiology. There is evidence from cell- based and animal models that excess Gbetagamma signaling can be detrimental and blocking Gbetagamma signaling has salutary effects in a number of pathological models. Gbetagamma regulates downstream pathways through modulation of enzymes that produce cellular second messengers or through regulation of ion channels by direct protein-protein interactions. Thus, blocking Gbetagamma functions requires development of small molecule agents that disrupt Gbetagamma protein interactions with downstream partners. Here we discuss evidence that small molecule targeting Gbetagamma could be of therapeutic value. The concept of disruption of protein-protein interactions by targeting a "hot spot" on Gbetagamma is delineated and the biochemical and virtual screening strategies for identification of small molecules that selectively target Gbetagamma functions are outlined. Evaluation of the effectiveness of virtual screening indicates that computational screening enhanced identification of true Gbetagamma binding molecules. However, further refinement of the approach could significantly improve the yield of Gbetagamma binding molecules from this screen that could result in multiple candidate leads for future drug development.  相似文献   

8.
G protein-coupled receptors (GPCRs) share a common architecture consisting of seven transmembrane (TM) domains. Various lines of evidence suggest that this fold provides a generic binding pocket within the TM region for hosting agonists, antagonists, and allosteric modulators. Here, a comprehensive and automated method allowing fast analysis and comparison of these putative binding pockets across the entire GPCR family is presented. The method relies on a robust alignment algorithm based on conservation indices, focusing on pharmacophore-like relationships between amino acids. Analysis of conservation patterns across the GPCR family and alignment to the rhodopsin X-ray structure allows the extraction of the amino acids lining the TM binding pocket in a so-called ligand binding pocket vector (LPV). In a second step, LPVs are translated to simple 3D receptor pharmacophore models, where each amino acid is represented by a single spherical pharmacophore feature and all atomic detail is omitted. Applications of the method include the assessment of selectivity issues, support of mutagenesis studies, and the derivation of rules for focused screening to identify chemical starting points in early drug discovery projects. Because of the coarseness of this 3D receptor pharmacophore model, however, meaningful scoring and ranking procedures of large sets of molecules are not justified. The LPV analysis of the trace amine-associated receptor family and its experimental validation is discussed as an example. The value of the 3D receptor model is demonstrated for a class C GPCR family, the metabotropic glutamate receptors.  相似文献   

9.
The current study describes the development of a computer package (GPCRmod) aimed at the high-throughput modeling of the therapeutically important family of human G-protein coupled receptors (GPCRs). GPCRmod first proposes a reliable alignment of the seven transmembrane domains (7 TMs) of most druggable human GPCRs based on pattern/motif recognition for each of the 7 TMs that are considered independently. It then converts the alignment into knowledge-based three-dimensional (3-D) models starting from a set of 3-D backbone templates and two separate rotamer libraries for side chain positioning. The 7 TMs of 277 human GPCRs have been accurately aligned, unambiguously clustered in three different classes (rhodopsin-like, secretin-like, metabotropic glutamate-like), and converted into high-quality 3-D models at a remarkable throughput (ca. 3s/model). A 3-D GPCR target library of 277 receptors has consequently been setup. Its utility for "in silico" inverse screening purpose has been demonstrated by recovering among top scorers the receptor of a selective GPCR antagonist as well as the receptors of a promiscuous antagonist. The current GPCR target library thus constitutes a 3-D database of choice to address as soon as possible the "virtual selectivity" profile of any GPCR antagonist or inverse agonist in an early hit optimization process.  相似文献   

10.
Reverse pharmacology is a screening technology that matches G protein-coupled receptors (GPCRs) with unknown cognate ligands in cell-based screening assays by detection of agonist-induced signaling pathways. One decade spent pursuing orphan GPCR screening by this technique assigned over 30 ligand/receptor pairs and revealed previously known or novel undescribed ligands, mostly of a peptidic nature. In this review, we describe the discovery, characterization of the structural composition, biological function, physiological role and therapeutic potential of three recently identified peptidic ligands. These are metastin, QRFP in a context of five RF-amide genes described in humans and the chemoattractant, chemerin. Metastin was initially characterized as a metastasis inhibitor. Investigations using ligand/receptor pairing revealed that metastin was involved in a variety of physiological processes, including endocrine function during pregnancy and gonad development. The novel RF-amide QRFP is implicated in food intake and aldosterone release from the adrenal cortex in the rat. Chemerin, first described as TIG2, is upregulated in tazarotene-treated psoriatic skin. By GPCR screening, bioactive chemerin was isolated from ovarial carcinoma fluid as well as hemofiltrate. Characterization as a chemoattractant for immature dendritic cells and analysis of the expression profile of metastin and its receptor suggested a physiological role of chemerin as a mediator of the immune response, inflammatory processes and bone development.  相似文献   

11.
G-protein coupled receptors (GPCRs) comprise a large superfamily of proteins that are targets for nearly 50% of drugs in clinical use today. In the past, the use of structure-based drug design strategies to develop better drug candidates has been severely hampered due to the absence of the receptor’s three-dimensional structure. However, with recent advances in molecular modeling techniques and better computing power, atomic level details of these receptors can be derived from computationally derived molecular models. Using information from these models coupled with experimental evidence, it has become feasible to build receptor pharmacophores. In this study, we demonstrate the use of the Hybrid Structure Based (HSB) method that can be used effectively to screen and identify prospective ligands that bind to GPCRs. Essentially; this multi-step method combines ligand-based methods for building enriched libraries of small molecules and structure-based methods for screening molecules against the GPCR target. The HSB method was validated to identify retinal and its analogues from a random dataset of ∼300,000 molecules. The results from this study showed that the 9 top-ranking molecules are indeed analogues of retinal. The method was also tested to identify analogues of dopamine binding to the dopamine D2 receptor. Six of the ten top-ranking molecules are known analogues of dopamine including a prodrug, while the other thirty-four molecules are currently being tested for their activity against all dopamine receptors. The results from both these test cases have proved that the HSB method provides a realistic solution to bridge the gap between the ever-increasing demand for new drugs to treat psychiatric disorders and the lack of efficient screening methods for GPCRs. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

12.
Virtual screening has become a major focus of bioactive small molecule lead identification, and reports of agonists and antagonists discovered via virtual methods are becoming more frequent. G protein-coupled receptors (GPCRs) are the one class of protein targets for which success with this approach has been limited. This is likely due to the paucity of detailed experimental information describing GPCR structure and the intrinsic function-associated structural flexibility of GPCRs which present major challenges in the application of receptor-based virtual screening. Here we describe an in silico methodology that diminishes the effects of structural uncertainty, allowing for more inclusive representation of a potential docking interaction with exogenous ligands. Using this approach, we screened one million compounds from a virtual database, and a diverse subgroup of 100 compounds was selected, leading to experimental identification of five structurally diverse antagonists of the thyrotropin-releasing hormone receptors (TRH-R1 and TRH-R2). The chirality of the most potent chemotype was demonstrated to be important in its binding affinity to TRH receptors; the most potent stereoisomer was noted to have a 13-fold selectivity for TRH-R1 over TRH-R2. A comprehensive mutational analysis of key amino acid residues that form the putative binding pocket of TRH receptors further verified the binding modality of these small molecule antagonists. The described virtual screening approach may prove applicable in the search for novel small molecule agonists and antagonists of other GPCRs.  相似文献   

13.
G-protein coupled receptors (GPCRs) are important drug targets for various diseases and of major interest to pharmaceutical companies. The function of individual members of this protein family can be modulated by the binding of small molecules at the extracellular side of the structurally conserved transmembrane (TM) domain. Here, we present Snooker, a structure-based approach to generate pharmacophore hypotheses for compounds binding to this extracellular side of the TM domain. Snooker does not require knowledge of ligands, is therefore suitable for apo-proteins, and can be applied to all receptors of the GPCR protein family. The method comprises the construction of a homology model of the TM domains and prioritization of residues on the probability of being ligand binding. Subsequently, protein properties are converted to ligand space, and pharmacophore features are generated at positions where protein ligand interactions are likely. Using this semiautomated knowledge-driven bioinformatics approach we have created pharmacophore hypotheses for 15 different GPCRs from several different subfamilies. For the beta-2-adrenergic receptor we show that ligand poses predicted by Snooker pharmacophore hypotheses reproduce literature supported binding modes for ~75% of compounds fulfilling pharmacophore constraints. All 15 pharmacophore hypotheses represent interactions with essential residues for ligand binding as observed in mutagenesis experiments and compound selections based on these hypotheses are shown to be target specific. For 8 out of 15 targets enrichment factors above 10-fold are observed in the top 0.5% ranked compounds in a virtual screen. Additionally, prospectively predicted ligand binding poses in the human dopamine D3 receptor based on Snooker pharmacophores were ranked among the best models in the community wide GPCR dock 2010.  相似文献   

14.
A conserved intracellular allosteric binding site (IABS) has recently been identified at several G protein-coupled receptors (GPCRs). Ligands targeting the IABS, so-called intracellular allosteric antagonists, are highly promising compounds for pharmaceutical intervention and currently evaluated in several clinical trials. Beside co-crystal structures that laid the foundation for the structure-based development of intracellular allosteric GPCR antagonists, small molecule tools that enable an unambiguous identification and characterization of intracellular allosteric GPCR ligands are of utmost importance for drug discovery campaigns in this field. Herein, we discuss recent approaches that leverage cellular target engagement studies for the IABS and thus play a critical role in the evaluation of IABS-targeted ligands as potential therapeutic agents.  相似文献   

15.
The molecular assemblies of signal transduction components, for example kinases and their target proteins or receptor-ligand complexes and intracellular signaling molecules, are critical for biological functions in cells. To better understand the interactions of these molecular assemblies and to screen for new pharmaceutics that could control and modulate these types of interactions, we have focused on developing high throughput approaches for the analysis of G-protein coupled receptors via flow cytometry. Flow cytometry offers a number of advantages including real-time collection of multicomponent data, and together with improvements in sample handling, the high throughput sampling rate is up to 100 samples per minute. For our targets, assemblies of solubilized GPCRs, a screening platform of a dextran bead has proven to be flexible, allowing different surface chemistries on the beads. The bead can be either ligand-labeled or have epitope-linked proteins attached to the bead surface, enabling several molecular assemblies to be constructed and analyzed. A major improvement with this system is that for screening ligands for GPCRs the underlying mechanism of action for these compounds can be investigated and incorporated into the definition of a 'hit'. Our current screening system is capable of simultaneously distinguishing GPCR agonists and antagonists.  相似文献   

16.
G protein-coupled receptors (GPCRs) represent the largest membrane protein family and a significant target class for therapeutics. Receptors from GPCRs’ largest class, class A, influence virtually every aspect of human physiology. About 45% of the members of this family endogenously bind flexible peptides or peptides segments within larger protein ligands. While many of these peptides have been structurally characterized in their solution state, the few studies of peptides in their receptor-bound state suggest that these peptides interact with a shared set of residues and undergo significant conformational changes. For the purpose of understanding binding dynamics and the development of peptidomimetic drug compounds, further studies should investigate the peptide ligands that are complexed to their cognate receptor.  相似文献   

17.
Cell surface heptahelical G protein-coupled receptors (GPCRs) mediate critical cellular signaling pathways and are important pharmaceutical drug targets. (1) In addition to traditional small-molecule approaches, lipopeptide-based GPCR-derived pepducins have emerged as a new class of pharmaceutical agents. (2, 3) To better understand how pepducins interact with targeted receptors, we developed a cell-based photo-cross-linking approach to study the interaction between the pepducin agonist ATI-2341 and its target receptor, chemokine C-X-C-type receptor 4 (CXCR4). A pepducin analogue, ATI-2766, formed a specific UV-light-dependent cross-link to CXCR4 and to mutants with truncations of the N-terminus, the known chemokine docking site. These results demonstrate that CXCR4 is the direct binding target of ATI-2341 and suggest a new mechanism for allosteric modulation of GPCR activity. Adaptation and application of our findings should prove useful in further understanding pepducin modulation of GPCRs as well as enable new experimental approaches to better understand GPCR signal transduction.  相似文献   

18.
We developed a new protocol for in silico drug screening for G-protein-coupled receptors (GPCRs) using a set of "universal active probes" (UAPs) with an ensemble docking procedure. UAPs are drug-like compounds, which are actual active compounds of a variety of known proteins. The current targets were nine human GPCRs whose three-dimensional (3D) structures are unknown, plus three GPCRs, namely β(2)-adrenergic receptor (ADRB2), A(2A) adenosine receptor (A(2A)), and dopamine D3 receptor (D(3)), whose 3D structures are known. Homology-based models of the GPCRs were constructed based on the crystal structures with careful sequence inspection. After subsequent molecular dynamics (MD) simulation taking into account the explicit lipid membrane molecules with periodic boundary conditions, we obtained multiple model structures of the GPCRs. For each target structure, docking-screening calculations were carried out via the ensemble docking procedure, using both true active compounds of the target proteins and the UAPs with the multiple target screening (MTS) method. Consequently, the multiple model structures showed various screening results with both poor and high hit ratios, the latter of which could be identified as promising for use in in silico screening to find candidate compounds to interact with the proteins. We found that the hit ratio of true active compounds showed a positive correlation to that of the UAPs. Thus, we could retrieve appropriate target structures from the GPCR models by applying the UAPs, even if no active compound is known for the GPCRs. Namely, the screening result that showed a high hit ratio for the UAPs could be used to identify actual hit compounds for the target GPCRs.  相似文献   

19.
GPR17, a previously orphan receptor responding to both uracil nucleotides and cysteinyl-leukotrienes, has been proposed as a novel promising target for human neurodegenerative diseases. Here, in order to specifically identify novel potent ligands of GPR17, we first modeled in silico the receptor by using a multiple template approach, in which extracellular loops of the receptor, quite complex to treat, were modeled making reference to the most similar parts of all the class-A GPCRs crystallized so far. A high-throughput virtual screening exploration of GPR17 binding site with more than 130,000 lead-like compounds was then applied, followed by the wet functional and pharmacological validation of the top-scoring chemical structures. This approach revealed successful for the proposed aim, and allowed us to identify five agonists or partial agonists with very diverse chemical structure. None of these compounds could have been expected ‘a priori’ to act on a GPCR, and all of them behaved as much more potent ligands than GPR17 endogenous activators.  相似文献   

20.
G protein-coupled receptors (GPCRs) are versatile signaling proteins that mediate complex cellular responses to hormones and neurotransmitters. Ligand directed signaling is observed when agonists, upon binding to the same receptor, trigger significantly different configuration of intracellular events. The current work reviews the structurally defined ligand – receptor interactions that can be related to specific molecular mechanisms of ligand directed signaling across different receptors belonging to class A of GPCRs. Recent advances in GPCR structural biology allow for mapping receptors’ binding sites with residues particularly important in recognition of ligands’ structural features that are responsible for biased signaling. Various studies show particular role of specific residues lining the extended ligand binding domains, biased agonists may alternatively affect their interhelical interactions and flexibility what can be translated into intracellular loop rearrangements. Studies on opioid and angiotensin receptors indicate importance of residues located deeper within the binding cavity and direct interactions with receptor residues linking the ortosteric ligand binding site with the intracellular transducer binding domain. Collection of results across different receptors may suggest elements of common molecular mechanisms which are responsible for passing alternative signals from biased agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号