首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of the thermal treatment on the stability in time of the dispersion degree of films containing binary polymer mixtures, poly(vinyl chloride)/poly(methyl methacrylate), poly(vinyl chloride)/poly(vinyl acetate) and poly(vinyl acetate)/poly(methyl methacrylate), was studied by thermogravimetry and optical microscopy with phase contrast. The dispersion degree depends particularly on the composition of the polymer mixture and can be improved by thermal treatment at temperatures above the glass temperatures of both homopolymers. It seems that this thermal treatment yields exclusively metastable structures with a general tendency to phase separation in a short time after thermal treatment, the heterogeneity mixtures (as film) being more pronounced.  相似文献   

2.
Degradation behavior has been compared for PVB, five VB-MMA copolymers which span the composition range, PMMA, and PVC by using thermogravimetry in dynamic nitrogen and thermal volatilization analysis (TVA) under vacuum for programmed heating at 10°C/min. Volatile products have been separated by subambient TVA and identified. PVB is substantially less stable than PVC but shows inmost respects analogous degradation behavior. The introduction of VB into the PMMA chain leads to intramolecular lactonization with release of methyl bromide at temperatures a little above 100°C; after this reaction is complete, however, the polymer is more stable toward volatilization than PMMA. Copolymers with moderate and high VB contents also lose hydrogen bromide. Carbon dioxide is a significant product at intermediate compositions. The variation of product distribution with copolymer composition is discussed in relation to the several reactions involved and comparisons are made with VC-MMA copolymers. PVB-PMMA blends snow some features of degradation behavior in common with the PVC-PMMA system but also very important differences. The effect of PVB is only to stabilize the PMMA; the mechanism is discussed. The role of PVB as an additive and VB as a comonomer for fire-retardant PMMA compositions is briefly considered in relation to earlier studies.  相似文献   

3.
4.
This study investigated and discovered a new miscible ternary blend system comprising three amorphous polymers: poly(vinyl acetate) (PVAc), poly(vinyl p‐phenol) (PVPh), and poly(methyl methacrylate) (PMMA) using thermal analysis and optical and scanning electron microscopies. The ternary compositions are largely miscible except for a small region of borderline ternary miscibility near the side, where the binary blends of PVAc/PMMA are originally of a borderline miscibility with broad Tg. In addition to the discovering miscibility in a new ternary blend, another objective of this study was to investigate whether the introduction of a third polymer component (PVPh) with hydrogen bonding capacity might disrupt or enhance the metastable miscibility between PVAc and PMMA. The PVPh component does not seem to exert any “bridging effect” to bring the mixture of PVAc and PMMA to a better state of miscibility; neither does the Δχ effect seem to disrupt the borderline miscible PVAc/PMMA blend into a phase‐separated system by introducing PVPh. Apparently, the ternary is able to remain in as a miscible state as the binary systems owing to the fact that PVPh is capable of maintaining roughly equal H‐bonding interactions with either PVAc or PMMA in the ternary mixtures to maintain balanced interactions among the ternary mixtures. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1147–1160, 2006  相似文献   

5.
The monolayer properties of poly(n-stearyl methacrylate), poly(n-lauryl methacrylate), and their mixtures at various ratios of the two polymers have been studied from the measurements of their surface pressure–area isotherms at air–water interface. The monolayer properties of their mixtures have been compared with those of their corresponding copolymers. The results show that the isotherms of the mixed monolayers have two break points at higher pressures than that of poly(n-lauryl methacrylate). This suggests that the mixtures may form more stable films that consist of separate phases of the two homopolymers, although each phase may contain a small amount of the other. The isotherms of the copolymer monolayers indicate a phase transition from liquid condensed to solid film between 50 segment mole % and 70% poly(n-stearyl methacrylate). The monclayer of these copolymers has properties that differ from those of the corresponding mixtures of two pure homopolymers and is more compatible than the mixtures of pure homopolymers.  相似文献   

6.
The miscibility, morphology, and thermal properties of poly(vinyl chloride) (PVC) blends with different concentrations of poly(methyl methacylate) (PMMA) have been studied. The interaction between the phases was studied by FTIR and by measuring the glass transition temperature (Tg) of the blends using differential scanning calorimetry. Distribution of the phases at different compositions was studied through scanning electron microscopy. The FTIR and SEM results show little interaction and gross phase separation. The thermogravimetric studies on these blends were carried out under inert atmosphere from ambient to 800 °C at different heating rates varying from 2.5 to 20 °C/min. The thermal decomposition temperatures of the first and second stage of degradation in PVC in the presence of PMMA were higher than the pure. The stabilization effect on PVC was found most significant with 10 wt% PMMA content in the PVC matrix. These results agree with the isothermal degradation studies using dehydrochlorination and UV-vis spectroscopic results carried out on these blends. Using multiple heating rate kinetics the activation energies of the degradation process in PVC and its blends have been reported.  相似文献   

7.
TG studies are given for PMMA prepared by radical polymerization, PTHF prepared by cationic polymerization, and their blends. A procedure is proposed for determining the activation energy, frequency factor, and the order of events corresponding to the respective stages of the multistage TG curves. The order of the initial event of PMMA is not the 1st. It is shown for this discussion that the relationship between mass loss and time of the 2nd order reaction is similar to that of the depolymerization including the vaporization process at the earlier times. Some of TG curves of PTHF are not dependent on the heating rate. This independence depends on the size of sample. The order of event of PTHF, which is obtained from TG curves dependent on the heating rate, is the 0th. The event order equal to the 0th reflects major contribution of vaporization in the event. The TG behaviors shown by the procedure mentioned above for the PMMA/PTHF blends with the smaller PMMA or PTHF contents cancel those of PMMA or PTHF. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The aim of this work was to study the thermo-oxidative dehydrochlorination of rigid and plasticised poly(vinyl chloride)/poly(methyl methacrylate) blends. For that purpose, blends of variable compositions from 0 to 100 wt% were prepared in the presence (15, 30 and 50 wt%) and in the absence of diethyl-2-hexyl phthalate as plasticiser. Their miscibility was investigated by using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Their thermo-oxidative degradation at 180 ± 1 °C was studied and the amount of HCl released from PVC was measured by a continuous potentiometric method. Degraded samples were characterised, after purification, by FTIR spectroscopy and UV-visible spectroscopy. The results showed that the two polymers are miscible up to 60 wt% of poly(methyl methacrylate) (PMMA). This miscibility is due to a specific interaction of hydrogen bonding type between carbonyl groups (CO) of PMMA and hydrogen (CHCl) groups of PVC as shown by FTIR analysis. On the other hand, PMMA exerted a stabilizing effect on the thermal degradation of PVC by reducing the zip dehydrochlorination, leading to the formation of shorter polyenes.  相似文献   

9.
The thermal stabilities of poly(acryloyl chloride) homopolymer and copolymers of acryloyl chloride with methyl methacrylate covering the entire composition range were studied by thermogravimetric analysis. At each extreme of the composition range incorporation of comonomer units results in a copolymer which is less stable than the PMMA homopolymer. The activation energies of the decomposition of the copolymers were calculated using the Arrhenius equation and found to decrease from 32.2 to 12.5 kJ mol?1 as acryloyl chloride concentration of the copolymer increases, indicating that the copolymers of higher acryloyl chloride concentration should easier decompose than other copolymers. The reactivity ratios of the copolymer were calculated and found to ber 1(AC)=0.2±0.02 andr 2(MMA)=0.9±0.1.  相似文献   

10.
《European Polymer Journal》1987,23(8):603-609
This paper reports pathways to attach anthracene and naphthalene to preformed poly(vinyl chloride) (PVC), poly(methyl methacrylate) (PMMA) and styrene-acrylonitrile random copolymer (SAN). The addition of 9-methylanthryl Li(1) or α-methyl-naphthyl Li(2) on the carbonyl of ester groups is an efficient means of labelling PMMA. The SN2 nucleophilic substitution of the secondary chlorine atoms by (1) and (2) works well when Li is the counter-anion. The alkylation of SAN by 9-methylanthryl chloride in the presence of NLi diisopropylamide is another appropriate labelling pathway.  相似文献   

11.
12.
Miscibility of poly(4-vinyl pyridine) (P4VP) and poly(2-vinyl pyridine) (P2VP) with poly(viny acetate) (PVAc), poly(vinyl alcohol) PVA and poly(vinyl acetate-co-alcohol) (ACA copolymers) has been investigated over a wide composition range. Differentiaal scanning calorimetry (DSC) results indicate that P2VP is immiscible with PVAC, PVA, and their copolymers over the whole composition range. In turn, P4VP appears to be immiscible with PVAC and PVA, but miscible with some ACA copolymers in certain range of composition. The P4VP-ACA phase diagram for different copolymer compositions has been determined. The variation of the glass transition temperature with composition for miscible mixtures was found to follow the Gordon-Taylor equation, with the parameter κ dependent upon copolymer composition. FTIR analysis of blends reveal the existence of specific interactions via hydrogen bonding between hydroxyl groups and the nitrogen of the pyridinic ring, which appear to be decisive for miscibility. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
Direct insertion probe pyrolysis mass spectrometry (DIP-MS) analyses of polycarbonate/poly(methyl methacrylate)/poly(vinyl acetate), (PC/PMMA/PVAc), ternary blends have been performed. The PC/PMMA/PVAc ternary blends were obtained by coalescing from their common γ-cyclodextrin-inclusion compounds (CD-ICs), through the removal of the γ-CD host (coalesced blend), and by a co-precipitation method (physical blend). The coalesced ternary blend showed different thermal behaviors compared to the co-precipitated physical blend. The stability of PC chains decreased due to the reactions of CH3COOH formed by deacetylation of PVAc above 300 °C, for both coalesced and physical blends. This process was more effective for the physical blend most likely due to the enhanced diffusion of CH3COOH into the amorphous PC domains, where it can further react producing low molecular weight PC fragments bearing methyl carbonate chain ends. The decrease in thermal stability of PC chains was less significant for the coalesced ternary blend indicating that the diffusion of CH3COOH was either somewhat limited or competed with intermolecular reactions between PMMA and PC and between PMMA and PVAc, which were detected and were associated with their close proximity in the intimately mixed coalesced PC/PMMA/PVAc ternary blend.  相似文献   

14.
Surface dilational moduli of poly (ethylene oxide) (PEO), poly (methyl methacrylate) (PMMA), and compatible PEO/PMMA blend films spread at the air-water interface were investigated as a function of surface concentration. The surface dilational modulus of an expanded PEO film increased as the surface concentration increased to 0.4mg/m(2), which corresponds to the limiting surface area of PEO. After peaking at this value, the surface dilational modulus decreased with an increase in the PEO concentration. Lissajous orbits of PEO films exhibited positive hysteresis loops for all surface concentration ranges. On the other hand, the surface dilational modulus of a condensed PMMA film steeply increased as the surface concentration increased. Lissajous orbits of PMMA films changed from positive hysteresis loops to negative loops at the surface concentration at which the surface pressure reached in the plateau region. The magnitude of the surface dilational modulus of PMMA was larger than that of PEO at a fixed surface concentration. The surface dilational moduli of the PEO/PMMA blend films increased with the total surface concentration and their magnitudes were less than those of the individual PMMA films and larger than those of the individual PEO films at fixed surface concentrations. Lissajous orbits of the PEO/PMMA blend films also changed from positive hysteresis loops to negative loops beyond the surface concentration at which the plateau surface pressure of PEO was attained.  相似文献   

15.
LB films of rigid-rod-like poly(n-hexyl isocyanate) (PHIC), flexible poly(vinyl acetate) (PVAc), and binary mixtures of PHIC as well as of PHIC and PVAc transferred on a mica surface from the air-water interface were observed by AFM. The grain structure of three individual PHIC samples in the AFM images changed shape from a rigid rod to a coiled rod with an increase in the molecular weight due to changes in the chain rigidity of PHIC. On the other hand, the AFM image of PVAc was similar to that of a mica surface, indicating that PVAc forms a uniform and homogeneous film. For the binary mixtures of PHIC, the grain structure in the AFM image of the highest molecular weight PHIC was expanded with a similar shape after the addition of the smallest one, whereas it lost its shape after the addition of the middle one. Their peak-to-valley values in the AMF images were similar to those of the individual PHIC samples. For the binary mixtures of PHIC with the highest mass and PVAc, the grain in the AFM image of the PHIC lost its shape after the addition of PVAc and it changed shape from a connected partial lost coil to an extended bundle rod with an increase in the PVAc component.  相似文献   

16.
宋义虎  郑强 《高分子科学》2016,34(4):483-490
Poly(methyl methacrylate)(PMMA) based ionomers with different lanthanum(La(Ⅲ)) contents(PMMA-XLa) synthesized by free radical solution polymerization were applied to poly(vinyl chloride)(PVC) resins as a kind of multifunctional aids, and their performances were evaluated by measuring the static stability time, initial discoloration, transparency, fusion behavior and tensile strength of the modified PVC. The ionomers with proper lanthanum(La(Ⅲ)) contents show a better thermal stability efficiency in comparison with traditional stabilizer lanthanum stearate. Meantime, they can accelerate PVC plasticization more efficiently than PMMA. The rigid PVC products stabilized with the ionomers present good transparency and enhanced tensile strength.  相似文献   

17.
The miscibilities of ternary copolymer blends prepared from poly(styrene-stat-acrylonitrile), poly(styrene-stat-methyl methacrylate), and poly(methyl methacrylate-stat-acrylonitrile) were predicted by calculating the interaction parameter, χblend, for various blend combinations, from the corresponding binary segmental interaction parameters estimated from previous work. Binodal and spinodal curves were calculated using the Flory-Huggins theory and it was observed that the most accurate estimate of the boundary between miscible and immiscible blends was given by the spinodal. It has also been demonstrated that in some of the ternary blends with fixed copolymer compositions the miscibility of the blend can be altered by changing the ratio of the three components in the mixture. Conditions for miscibility in this ternary system, and possibly a general feature of all such systems, are (a) that at least two of the binary interaction parameters χij are less than the critical value χcrit, while the third should not be too much larger, that is, one of the copolymers may act as a compatibilizer for the other two copolymers, (b) that the difference Δχ = /χ12 ? χ13/ is small. © 1992 John Wiley & Sons, Inc.  相似文献   

18.
The processability of rigid poly(vinyl chloride) can be improved by adding trichloroethylene as chain-transfer agent, increasing the polymerization temperature, and especially by combining the two effects together. The resulting synergistic interaction is best expressed by an equation of the form, P = (A + B[TCE])eC/T, where P is thermal plasticity, AeC/T is the combined effect of chain transfer to initiator and monomer and termination through combination and disproportionation, and B[TCE]eC/T represents the chain-transfer action of trichloroethylene.  相似文献   

19.
The stereoregular poly(methyl methacrylate)/poly(vinyl chloride) blends with a wide formulation range are extensively simulated using the coarse‐grained (CG) molecular dynamics (MD) method. To improve the representability, the bonded CG potentials are re‐parameterized against the atomistic simulated melt systems whereas the nonbonded CG potentials are adopted as developed in our previous work. Based on the CG potentials, the MD simulations reproduce all the local distributions of pure systems and the miscibility of mixed systems. Moreover, the global conformational properties are also closer to the target ones than those obtained using the previous CG potentials. The changes in density and volume upon mixing are computed together with the energies of mixing. They are all negative over the entire composition range and indicate stronger intermolecular interactions between distinct components than those between identical components. In particular, it is found that upon mixing the changes in density are insensible to chain tacticity but the changes in volume and the energies of mixing do, which quantitatively confirms that both inter‐molecular interactions and free‐volumes mainly contribute to the observed phase behaviors. Such models and methods reported herein can be used to quickly optimize formulations of polymer blends. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 203–212  相似文献   

20.
Poly(methyl methacrylate) with a thiophene end group having narrow polydispersity was prepared by the Atom Transfer Radical Polymerization (ATRP) technique. Subsequently, electrically conducting block copolymers of thiophene-capped poly(methyl methacrylate) with pyrrole were synthesized by using p-toluene sulfonic acid and sodium dodecyl sulfate as the supporting electrolytes via constant potential electrolysis. Characterization of the block copolymers were performed by CV, FTIR, SEM, TGA, and DSC analyses. Electrical conductivities were evaluated by the four-probe technique. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4218–4225, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号