首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical band gap of amorphous, crystallized, laser induced amorphous and laser induced crystallized films of Se75S25−xAgx (x=4, 6 and 8) glassy alloys was studied from absorption spectra. The amorphous and crystallized films were induced by pulse laser for 10 min. After laser irradiation on amorphous and crystalline films, optical band gap was measured. It has been found that the mechanism of the optical absorption follows the rule of indirect transition. The amorphous thin films show an increase in the optical band gap, while the crystallized (thermally annealed) thin films show a decrease in the optical band gap by inducing laser irradiation. Crystallization and amorphization of chalcogenide films were accompanied with the change in the optical band gap. The change in optical energy gap could be determined by identification of the transformed phase. These results are interpreted in terms of concentration of localized states due to shift in Fermi level.  相似文献   

2.
Thin films of amorphous Se100−xSbx (x=5,10 and 20 at%) system are deposited on a silicon substrate at room temperature (300 K) by thermal evaporation technique. The optical constant such as refractive index (n) has been determined by a method based on the envelope curves of the optical transmission spectrum at normal incidence by a Swanpoel method. The oscillator energy (Eo), dispersion energy (Ed) and other parameters have been determined by the Wemple–DiDomenico method. The absorption coefficient (α) has been determined from the reflectivity and transmitivity spectrum in the range 300–2500 nm. The optical-absorption data indicate that the absorption mechanism is a non-direct transition. We found that the optical band gap, Egopt, decreases from 1.66±0.01 to 1.35±0.01 eV with increase Sb content.  相似文献   

3.
CuIn3S5 thin films were prepared from powder by thermal evaporation under vacuum (10−6 mbar) onto glass substrates. The glass substrates were heated from 30 to 200 °C. The films were characterized for their optical properties using optical measurement techniques (transmittance and reflectance). We have determined the energy and nature of the optical transitions of films. The optical constants of the deposited films were determined in the spectral range 300-1800 nm from the analysis of transmission and reflection data. The Swanepoel envelope method was employed on the interference fringes of transmittance patterns for the determination of variation of refractive index with wavelength. Wemple-Di Domenico single oscillator model was applied to determine the optical constants such as oscillator energy E0 and dispersion energy Ed of the films deposited at different substrate temperatures. The electric free carrier susceptibility and the ratio of the carrier concentration to the effective mass were estimated according to the model of Spitzer and Fan.  相似文献   

4.
Thin films of In-doped Ge-S in the form of Ge35In8S57 with different film thickness were deposited using an evaporation method. The X-ray diffraction studies demonstrate that the as-prepared films are amorphous in nature for these films. Some optical constants were calculated at a thickness of 150, 300, 450 and 900?nm and annealing temperature of 373, 413, 437 and 513?K. Our optical observations show that the mechanism of the optical transition obeys the indirect transition. It was found that the energy gap, Eg, decreases from 2.44 to 2.20?eV with expanding the thickness of the film from 150 to 900?nm. On the other hand, it was found that Eg increases with annealing temperature from 373 to 513?K. The increment in the band gap can be attributed to the gradual annealing out of the unsaturated bonds delivering a decreasing the density of localized states in the band structure. Using the single oscillator model, the dispersion of the refractive index is described. The dispersion constants of these films were calculated with different both thickness and annealing temperatures. Additionally, both of nonlinear susceptibility, χ(3) and nonlinear refractive index, n2 were calculated.  相似文献   

5.
Se75S25−xCdx is a promising ternary material, which has received considerable attention due to its applications in the fabrication of various solid state devices. These have distinct advantages, large packing density, mass replication, fast data rate, high signal-to-noise ratio and high immunity to defects. Measurements of optical constants (absorption coefficient, refractive index, extinction coefficient, real and imaginary part of the dielectric constant) have been made on Se75S25−xCdx (where x = 0, 2, 4, 6 and 8) thin films of thickness 3000 Å as a function of photon energy in the wave length range 400–1000 nm. It has been found that the optical band gap and extinction coefficient increases while the value refractive index decreases on incorporation of cadmium in Se–S system. The results are interpreted in terms of the change in concentration of localized states due to the shift in Fermi level. Due to the large absorption coefficient and compositional dependence of reflectance, these materials may be suitable for optical disk material.  相似文献   

6.
 The effects of composition and thermal annealing near crystallization temperature, Tc on the optical and structural properties of Ge20Se80−xBix (x=0, 2.5, 5 and 7.5 at%) was investigated. The influence of incorporation Bi content in Ge20Se80−xBix system results in a gradual decrease in the indirect optical gap from 1.89 to 1.44 eV, this behavior can be explained as increased tailing. On annealing, the optical band gap Eg decreases gradually for the crystallized films while the refractive index increases, this behavior can be attributed to transformation from amorphous to crystalline and was explained in the light of dangling bond model. The refractive index n of as-prepared and annealed films has been analyzed according to the Wwmple–DiDominico single oscillator model and the values of Eo and Ed were determined. The effect of annealing on the nature and degree of crystallization has been investigated by studying the structure using transmission electron microscope, X-ray diffraction and scanning electron microscope.  相似文献   

7.
The variation of DC electrical conductivity and the optical properties of thermally evaporated a- (Sb2Se3)100−xSnx thin films with temperature have been studied. It is found that the thermal activation energy decreases, while the optical gap first increases (up to x=1) and then decreases, with the increase in Sn content. These results have been explained by taking into consideration the structural modifications induced by the incorporation of Sn into the parent alloy. The variation in the conductivity prefactor (σo) with Sn addition indicates a change in the dominant conduction transport mechanism from extended states to localized states. An experimental correlation between the activation energy and the pre-exponential factor has been observed, indicating the validity of Meyer–Neldel rule in the studied samples.  相似文献   

8.
Polycrystalline CuIn0.5Ga0.5Te2 films were deposited by flash evaporation from ingot prepared by reacting, in stoichiometric proportions, high purity Cu, In, Ga and Te elements in vacuum sealed quartz. The as-obtained films were characterized by X – ray diffraction (XRD), transmission electron microscopy (TEM) combined with energy dispersive spectroscopy (EDS). XRD and TEM results showed that the layer has a chalcopyrite-type structure, predominantly oriented along (112) planes, with lattice parameters a?=?0.61?nm and c?=?1.22?nm. The optical properties in the near - infrared and visible range 600–2400?nm have been studied. The analysis of absorption coefficient yielded an energy gap value of 1.27?eV. Photoluminescence analysis of as-grown sample shows two main emission peaks located at 0.87 and 1.19?eV at 4?K.  相似文献   

9.
We have investigated photon-induced changes of optical parameters of amorphous Ge20Bi10Se70 thin films due to illumination by laser irradiation. Absorption peaks were detected in the tailing area in the wavelength range between 300 and 600 nm. These peaks reduced to two peaks in the higher dose (9 J/cm2). The optical energy gap E gd was found to have the well known direct-allowed transition mechanism. Values of E gd show that all films exhibit a photo-induced photo-darkening effect indicated by a red shift of E gd. The higher laser dose shows an increase in E gd values. The effect of laser on other optical constants was also investigated. The refractive index (n), extinction coefficient (k) and dielectric constant of irradiated films were also calculated.  相似文献   

10.
Se90Te10−xAgx (0 ≤ x ≤ 6) compositions were prepared by quenching technique. Thin films with different thicknesses of the obtained compositions were deposited on dry clean glass substrates by thermal evaporation technique. Energy dispersive X-ray spectroscopy (EDX) indicates that samples are nearly stoichiometric. X-ray diffraction patterns indicate that they are in the amorphous state. The optical constants, the refractive index n and the absorption index k, have been calculated from transmittance T and reflectance R through the spectral range of 400-2500 nm for the studied films with different thicknesses (165-711 nm). From the analysis of refractive index n data, high frequency dielectric constant ? was determined. Both ? and n are found to decrease with the increase of Ag content. The optical band gap is calculated for all compositions from the absorption coefficient analysis. The effect of the Ag addition on the obtained optical parameters has been discussed. The analysis of absorption index k data, revealed the existence of allowed indirect transitions for all compositions. It is indicated also that increase with increasing Ag content.  相似文献   

11.
In order to evaluate the effect of Er doping in the range of 0–1.0 mol% on optical indirect band gap energy (Eg) of the film, the Er-doped TiO2 (Er-TiO2) thin films were spin-coated onto fluorine-doped SnO2 coated (FTO) glasses. Glancing angle X-ray diffraction (GAXRD) results indicated that the films whose thickness was 550 nm consisted of pure anatase and FTO substrate. The anatase (101) TiO2 peaks became broader and weaker with the rise in Er content. The apparent crystallite size decreased from 12 nm to 10 nm with increasing the amount of Er from 0 mol% to 1.0 mol%. UV–vis spectrophotometry showed that the values of Eg decreased from 3.25 eV to 2.81 eV with the increase of Er doping from 0 to 0.7 mol%, but changed to 2.89 eV when Er content was 1.0 mol%. The reduction in Eg might be attributed to electron and/or hole trapping at the donor and acceptor levels in the TiO2 band structure.  相似文献   

12.
It was demonstrated that spray pyrolysis can be used to prepare Ce1−xZrxO2 thin films with x between 0 and 1. The composition of these films was determined by electron probe microanalysis (EPMA), and the crystalline structure by X-ray diffraction (XRD) and Raman spectroscopy (RS). Cyclic voltammetry (CV) was performed in an electrolyte of propylene carbonate with 1 M LiClO4. Films with high Zr content were incapable of charge exchange of Li+ ions. In the contrast, films with high Ce content were found to be able to insert/extract large charge densities of Li+ ions. They also remained transparent during Li+ intercalation.  相似文献   

13.
Thin Ga2O3 films were grown on Si (100) using trimethylgallium (TMG) and oxygen as the precursors through plasma-enhanced atomic layer deposition. The depositions were made over a temperature range of 80–250?°C with a growth per cycle of around 0.07 nm/cycle. Surface self-saturating growth was obtained with TMG pulse time ≥20?ms?at a temperature of 150?°C. The root mean square surface roughness of the obtained Ga2O3 films increased from 0.1?nm to 0.3?nm with increasing the growth temperature. Moreover, the x-ray photoelectron spectroscopy analysis indicated that the obtained film was Ga-rich with the chemical oxidation states Ga3+ and Ga1+, and no carbon contamination was detected in the films after Ar+ sputtering. The electron density of films measured by x-ray reflectivity varied with the growth temperature, increasing from 4.72 to 5.80?g/cm3. The transmittance of Ga2O3 film deposited on a quartz substrate was obtained through ultraviolet visible (UV–Vis) spectroscopy. An obvious absorption in the deep UV region was demonstrated with a wide band gap of 4.6–4.8?eV. The spectroscopic ellipsometry analysis indicated that the average refractive index of the Ga2O3 film was 1.91?at 632.8?nm and increased with the growth temperature due to the dense structure of the films. Finally, the I-V and C-V characteristics proved that the Ga2O3 films prepared in this work had a low leakage current of 7.2?×?10?11 A/cm2 at 1.0?MV/cm and a high permittivity of 11.9, suitable to be gate dielectric.  相似文献   

14.
This paper deals with some physical properties of antimony sulphide Sb2S3 thin films obtained by an annealing process in sulphur vapors at 300 °C of Sb thermal evaporated thin films deposited on glass substrate. The crystal structure and surface morphology were investigated by both XRD and AFM techniques. This structural study shows that Sb2S3 thin films were well crystallized in orthorhombic structure and some parameters such as the lattice parameter, crystallite size, microstrain and degree of preferred orientation have been reported and correlated with the effect of crystallite size. On the other hand, the refractive index and the extinction coefficient were discussed in terms of the Forouhi–Bloomer model. The optical band gap was found to range from 1.75 to 2.23 eV. Finally, the analysis of the optical parameters extracted from the Urbach–Martienssen and Forouhi–Bloomer models lead to some explanations of the correlations between the structural properties in terms of the crystallite size and optical ones.  相似文献   

15.
Different thickness of polycrystalline ZnTe films have been deposited onto glass substrates at room temperature by vacuum evaporation technique. The structural characteristics studied by X-ray diffraction (XRD) showed that the films are polycrystalline and have a zinc blende (cubic) structure. The calculated microstructure parameters revealed that the crystallite size increases and microstrain decreases with increasing film thickness. The transmittance and reflectance have been measured at normal and near normal incidence, respectively, in the spectral range 400-2500 nm. For ZnTe films of different thicknesses, the dependence of absorption coefficient, α on the photon energy showed the occurrence of a direct transition with band gap energy (For ZnTe films of different thicknesses) confirming the independency of deduced energy gap on film thickness. The refractive indices have been evaluated in terms of envelope method, which has been suggested by Swanepoul in the transparent region. The refractive index could be extrapolated by Cauchy dispersion relationship over the whole spectra range, which extended from 400 to 2500 nm. It was observed that the refractive index, n increased upon increasing the film thickness up to 508 nm, lying within the experimental error for further increases in film thickness.  相似文献   

16.
The growth temperature and post annealing-dependent optical and structural effect of RF magnetron sputtered ZnO thin films were examined. As the growth temperature increased, the lattice constant increased and approached the bulk value, suggesting a decrease in interfacial strain between the substrate and thin film. For the post annealed samples, the interfacial strain decreased further and was close to the bulk value regardless of the post annealing environments (in air and O2). The optical properties of all ZnO thin films examined and revealed higher transparency (>90%). Furthermore, the optical band gap varied according to the growth temperature and post annealing environments due to a decrease in the interfacial strain effect.  相似文献   

17.
Effect of the deposition temperature (200 and 500 °C) and composition of SmxCe1−xO2−x/2 (x = 0, 10.9–15.9 mol%) thin films prepared by electron beam physical vapor deposition (EB-PVD) and Ar+ ion beam assisted deposition (IBAD) combined with EB-PVD on structural characteristics and morphology/microstructure was investigated. The X-ray photoelectron spectroscopy (XPS) of the surface and electron probe microanalysis (EPMA) of the bulk of the film revealed the dominant occurrence of Ce4+ oxidation state, suggesting the presence of CeO2 phase, which was confirmed by X-ray diffraction (XRD). The Ce3+ oxidation states corresponding to Ce2O3 phase were in minority. The XRD and scanning electron microscopy (SEM) showed the polycrystalline columnar structure and a rooftop morphology of the surface. Effects of the preparation conditions (temperature, composition, IBAD) on the lattice parameter, grain size, perfection of the columnar growth and its impact on the surface morphology are analyzed and discussed.  相似文献   

18.
The temperature dependent band gap energy of Cu2ZnSnS4 thin film was studied in the temperature range of 77-410 K. Various relevant parameters, which explain the temperature variation of the fundamental band gap, have been calculated using empirical and semi-empirical models. Amongst the models evaluated, the Varshni and Pässler models show the best agreement with experimental data in the middle temperature range. However, the Bose-Einstein model fits reasonably well over the entire temperature range evaluated. The calculated fitting parameters are in good agreement with the estimated value of the Debye temperature calculated using the Madelung-Einstein approximation and the Hailing method.  相似文献   

19.
The optical properties of Tl4Ga3InSe8 layered single crystals have been studied by means of transmission and reflection measurements in the wavelength range of 500–1100 nm. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 1.94 and 2.20 eV, respectively. Transmission measurements carried out in the temperature range of 10–300 K revealed that the rate of change of the indirect band gap with temperature is γ=−4.1×10−4 eV/K. The absolute zero value of the band gap energy was obtained as Egi(0)=2.03 eV. The dispersion of the refractive index is discussed in terms of the Wemple–DiDomenico single-effective-oscillator model. The refractive index dispersion parameters: oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index were found to be 4.10 eV, 23.17 eV, 6.21×1013 m−2 and 2.58, respectively. From X-ray powder diffraction study, the parameters of monoclinic unit cell were determined.  相似文献   

20.
Ternary thin films of cerium titanium zirconium mixed oxide were prepared by the sol-gel process and deposited by a spin coating technique at different spin speeds (1000-4000 rpm). Ceric ammonium nitrate, Ce(NO3)6(NH4)2, titanium butoxide, Ti[O(CH2)3CH3]4, and zirconium propoxide, Zr(OCH2CH2CH3)4, were used as starting materials. Differential calorimetric analysis (DSC) and thermogravimetric analysis (TGA) were carried out on the CeO2-TiO2-ZrO2 gel to study the decomposition and phase transition of the gel. For molecular, structural, elemental, and morphological characterization of the films, Fourier Transform Infrared (FTIR) spectral analysis, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), cross-sectional scanning electron microscopy (SEM), and atomic force microscopy (AFM) were carried out. All the ternary oxide thin films were amorphous. The optical constants (refractive index, extinction coefficient, band gap) and thickness of the films were determined in the 350-1000 nm wavelength range by using an nkd spectrophotometer. The refractive index, extinction coefficient, and thickness of the films were changed by varying the spin speed. The oscillator and dispersion energies were obtained using the Wemple-DiDomenico dispersion relationship. The optical band gap is independent of the spin speed and has a value of about Eg≈2.82±0.04 eV for indirect transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号