首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xu Y  Qin W  Lau YH  Li SF 《Electrophoresis》2005,26(18):3507-3517
This report describes a novel online field-amplified sample stacking (FASS) procedure to analyze 16 chlorinated acid herbicides. By using a poly(vinyl alcohol) (PVA)-coated capillary to reduce electroosmotic flow and introducing a methanol-water plug before sample loading, the sample injection time could be very long without loss of sample and separation efficiency. Under the optimized condition, the FASS procedure could provide great sensitivity enhancement (5000-10 000-fold) and satisfactory reproducibility (relative standard deviations of migration times less than 2.4%, relative standard deviations of peak areas less than 8.0%). Combined with cationic surfactant-assisted solid-phase extraction (CSA-SPE), the limit of detection of the herbicides ranged from 0.269 to 20.3 ppt, which are two orders lower than those of the US Environmental Protection Agency standard method 515.1. The CSA-SPE-FASS-CE method was successfully applied to the analysis of local pond water.  相似文献   

2.
Liu S  Li Q  Chen X  Hu Z 《Electrophoresis》2002,23(19):3392-3397
A simple and rapid capillary zone electrophoresis method was developed for the separation of the main alkaloids from Sophora flavescens Ait. with the optimum buffer solution containing 110 mM NaH(2)PO(4) and 15% 2-propanol (pH 3.0). The field-amplified sample stacking (FASS) technique was applied to the on-line concentration of the alkaloids. The data presented in this work demonstrate that the use of a short water plug at the column inlet is essential for improving the reproducibility of FASS with electro-injection, and that the water plug injection time affected the sensitivity significantly. The sample concentration was further increased by about 2-3-fold by the introduction of a relatively longer water plug. With this stacking measure, the concentration sensitivity was about 3-4 orders of magnitude higher than in hydrodynamic injection.  相似文献   

3.
Lu CC  Jong YJ  Ferrance J  Ko WK  Wu SM 《Electrophoresis》2007,28(18):3290-3295
A short-end injection CE method combining field-amplified sample stacking (FASS) is presented for the analysis of fluoxetine (FL) and norfluoxetine in plasma. In this study, FASS enhanced the sensitivity about 1100-fold, while short-end injection reduced the analysis time to less than 4 min. Parameters involved in the separations were investigated using a central composite design (CCD) and response surface methodology to optimize the separation conditions in a total of only 32 runs. Samples injected into the capillary for 99.9 s at a voltage of -5 kV were stacked in a water plug (0.5 psi, 9 s). Baseline resolution of FL and its major metabolite was achieved using a BGE formulation consisting of phosphate-triethanolamine at low pH, and a separation voltage of -10 kV. Five percent methanol was added as organic modifier to enhance selectivity and resolution. The linear range was between 10 and 500 ng/mL (r >0.9946), covering the expected plasma therapeutic ranges. The LOD in plasma were 4 ng/mL (S/N = 3), a value comparable to that obtained using LC-MS, showing the success of the on-line stacking technique. Our method was also successfully validated in quantification and pharmacokinetic studies with three volunteer plasma samples and could be applied to pharmacogenetic studies.  相似文献   

4.
A multi-T microchip for integrated field amplified sample stacking (FASS) with CE separation to increase the chip-based capillary electrophoresis (chip-based CE) sensitivity was developed. Volumetrically defined large sample plug was formed in one step within 5s by the negative pressure in headspace of the two sealed sample waste reservoirs produced using a syringe pump equipped with a 3-way valve. Stacking and separation can proceed only by switching the 3-way valve to release the vacuum in headspace of the two sample waste reservoirs. This approach considerably simplified the operations and the equipments for FASS in chip-based CE systems. Migration time precisions of 3.3% and 1.3% RSD for rhodamine123 (Rh123) and fluorescien sodium salt (Flu) in the separation of a mixture of Flu and Rh123 were obtained for nine consecutive determinations with peak height precisions of 4.8% and 3.4% RSD, respectively. Compared with the chip-based CE on the cross microchip, the sensitivity for analysis of FlTC, FITC-labeled valine (Val) and Alanine (Ala) increased 55-, 41- and 43-fold, respectively.  相似文献   

5.
Capillary electrophoresis (CE) with head-column field-amplified sample stacking (FASS) in presence of a water plug inserted at the capillary tip is a robust approach providing a more than 1000-fold sensitivity enhancement when applied to low-conductivity samples that are analyzed in an integrated instrument. Employing modular systems comprising a small hydrodynamic buffer flow (siphoning) towards the capillary end and featuring UV absorption or electrospray ionization mass spectrometric (MS) detection, insertion of a water plug is demonstrated to deteriorate the performance of head-column FASS or making it unfunctional. Electroinjection in the absence of the water plug can be employed instead and is shown to provide a ng/ml sensitivity when applied to low conductivity samples. With some suction of sample into the capillary during electroinjection, contamination of the sample vial with buffer is thereby largely avoided. Electroinjection applied to the CE-ion trap MS-MS and MS-MS-MS analysis of twofold diluted urines, urinary solid-phase extracts and urinary liquid-liquid extracts is shown to provide much improved sensitivity compared to hydrodynamic injection of these samples. With electroinjection from diluted urine and urinary solid-phase extracts, the presence of free opioids and their glucuronic acid conjugates can be unambiguously confirmed in urines that were collected after single-dose administration of small amounts of opioids (tested with about 7 mg codeine and 25 mg dihydrocodeine, respectively). Thus, CE-multiple MS with direct electroinjection of opioids from untreated urines could prove to become a rapid and simple approach for unambiguous urinary testing of drug abuse. Procedures leading to the reduction of siphoning in modular CE setups are briefly discussed as well.  相似文献   

6.
A new trimethylamine amination polychloromethyl styrene nanolatex (TMAPL) and TMAPL coated capillary column (ccc‐TMAPL) were successfully prepared. The TMAPL coating was characterized with reversed steady EOF values of ca. ?16.8 × 10?5 cm2 V?1 s?1. It was applied to establish open‐tubular (OT) CEC and field‐amplified sample stacking (FASS) OT‐CEC methods for the determination of bromate in tap water. Compared to OT‐CEC, the LOD with FASS‐OT‐CEC was improved from 80 to 8 ng/mL. The developed FASS‐OT‐CEC method was practically used for the analysis of bromate in tap water samples with recoveries ranging from 93.6 to 103.5%.  相似文献   

7.
利用高压电容耦合非接触电导检测器(HV-C4D),结合毛细管电泳场放大进样(FASS),以2-N-吗啡啉乙磺酸(MES)/组氨酸(His)为缓冲溶液,电泳分离测定了Zn2+.考察了样品溶液中MES/His的浓度及电动进样时间对场放大浓缩因子及缓冲溶液浓度对检测灵敏度的影响.在10mmol/LMES/His(pH=4.9)的分离缓冲溶液中,FASS对Zn2+的浓缩因子为1.3×103.Zn2+的浓度在10~1000nmol/L范围内与峰面积有良好线性关系(R=0.9995),检测限为5nmol/L(S/N=3).该方法可用于痕量Zn2+的测定.  相似文献   

8.
To improve the sensitivity of the UV-detection for the determination of trace amounts of albumin by capillary zone electrophoresis (CZE), five on-line preconcentration techniques, including field-amplified sample stacking (FASS), head-column field-amplified sample stacking (HC-FASS), stacking with a polymer solution, dynamic pH junction and large volume sample stacking (LVSS) with reversed polarity, were compared. Sensitivity enhancement factor and reproducibility were two factors that were used to assess the suitability of each method. To minimize protein adsorption on the capillary wall, capillaries were covalently modified with anionic polymer, poly(sulfopropylmethacrylate) coating. All used methods have good reproducibility. The maximum sensitivity enhancement factor (about 67-fold in terms of peak heights) was achieved with LVSS technique. The concentration limit of detection (LOD) (S/N=3) for the human serum albumin obtained with the optimized LVSS approach was 15 microg/ml with UV-detection. The method was further evaluated for the analysis of urine samples with gel-filtration-based sample-desalting procedure.  相似文献   

9.
Zheng X  Lu M  Zhang L  Chi Y  Zheng L  Chen G 《Talanta》2008,76(1):15-20
A simple and sensitive online field-amplification sample stacking (FASS) pre-enrichment method following by capillary electrophoresis with amperometric detection has been developed for the determination of diuretics, such as indapamide (IDP), hydrochlorothiazide (HCT) and bumetanide (BMTN) in urine. Under the optimum conditions, it was found that the low concentration buffer solution could be used as the diluents for simultaneous field-amplification injection of three diuretics after electrokinetically injecting a short water plug (15 kV, 3 s). Three analytes could be well separated within 10 min in an uncoated fused-silica capillary with H(3)BO(3)-Na(2)B(4)O(7) (BB) buffer solution (pH 8.98). The detection limits (S/N=3) were 9.0 ng/mL for IDP, 20 ng/mL for HCT and 1.5 ng/mL for BMTN, respectively. The detection limits of three diuretics were much lower by FASS than that by conventional sample injection, of which the detection limits were 340, 890 and 330 ng/mL for IDP, HCT and BMTN, respectively. Especially, for bumetanide the detection limit was 220-time lower by FASS. The linear ranges of three diuretics were all over three orders of magnitude. The proposed method has been successfully applied to analyze the diuretics in human urine samples without off-column sample pre-concentration.  相似文献   

10.
Fan L  Cheng Y  Li Y  Chen H  Chen X  Hu Z 《Electrophoresis》2005,26(22):4345-4354
A simple, effective, and continuous online concentration method for the sensitive detection of alkaloids applying CE-flow injection analysis with head-column field-amplified sample stacking was developed. A series of samples was continuously introduced into the capillary by electrokinetic means without interrupting the high voltage. A short water plug was introduced by the EOF at the capillary inlet end prior to sample introduction. Under optimum conditions, 15-fold improvement in concentration sensitivity was achieved, giving an LOD of about 0.67 and 0.73 microg/mL for ephedrine (E) and pseudoephedrine (PE), respectively. The separation could be achieved within 4 min and sample throughput rate could reach up to 7/h. The repeatability (defined as RSD) was 3.62, 1.51% with peak area evaluation and 1.30, 2.58% with peak height evaluation for E and PE, respectively. This method has been successfully applied to the analysis of commercial pharmaceutical preparations containing E and PE, and the recoveries were 92.3-102.4%.  相似文献   

11.
When using capillary electrophoresis (CE) for the analysis of biological samples, it is often necessary to employ techniques to overcome peak-broadening that results from having a high-conductivity sample matrix. To improve the concentration detection limits and separation efficiency of cationic pharmaceuticals in CE, pH-mediated acid stacking was performed to electrofocus the sample, improving separation sensitivity for the analyzed cations by 60-fold. However, this method introduces a large titrated acid plug into the capillary. To overcome the limitations this low-conductivity plug poses to stacking, the plug was removed prior to the separation step by applying reverse pressure to force it out of the anode of the capillary. Employing this technique allows for roughly twice the volume of sample to be injected. A maximum sample injection time of 240 s was attainable with baseline peak resolution compared to a maximum sample injection time of 120 s without reverse pressure, leading to a twofold decrease in the limits of detection of the analytes used. Separation efficiency overall is also improved when utilizing the reverse pressure step. For example, a 60 s sample injection time results in 94,000 theoretical plates as compared to 60,500 theoretical plates without reverse pressure. This reverse-pressure method was used for detection and quantitation of several cationic pharmaceuticals that were prepared in Ringer's solution to simulate microdialysis sampling conditions.  相似文献   

12.
Preconcentration of chemical warfare agent degradation products (alkylphosphonic acids and alkyl alkylphosphonic acids) in low-conductivity matrices (purified water, tap water and local river water) by field-amplified sample stacking (FASS) was developed for capillary electrophoresis (CE) coupled to ion trap mass spectrometry. FASS was performed by adding a mixture of HCOONH(4) and NH(4)OH in appropriate concentrations to the sample. This allowed to control the conductivity and the pH of the sample in order to obtain FASS performances that are independent of analyte concentration. The influence of different parameters on FASS (sample to background electrolyte (BGE) conductivity ratio, injection volume and concentration of BGE) was studied to determine the optimal conditions and was rationalized by using the theoretical model developed by Burgi and Chien. A good correlation was obtained between the bulk electroosmotic velocity predicted by this model and the experimental value deduced from the migration time of the electroosmotic flow marker detected by mass spectrometry (MS). This newly developed method was successfully applied to the analysis of tap water and local river water fortified with the analytes and provided a 10-fold sensitivity enhancement in comparison to the signal obtained without preconcentration procedure. The quite satisfactory repeatability and linearity for peak areas obtained in the 0.5-5 microg mL(-1) concentration range allow quantitative analysis to be implemented. Limits of detection of 0.25-0.5 microg mL(-1) for the alkyl alkylphosphonic acids and of 0.35-5 microg mL(-1) for the alkylphosphonic acids were reached in tap water and river water.  相似文献   

13.
Field amplified sample stacking (FASS) uses differential electrophoretic velocity of analyte ions in the high‐conductivity background electrolyte zone and low conductivity sample zone for increasing the analyte concentration. The stacking rate of analyte ions in FASS is limited by molecular diffusion and convective dispersion due to nonuniform electroosmotic flow (EOF). We present a theoretical scaling analysis of stacking dynamics in FASS and its validation with a large set of on‐chip sample stacking experiments and numerical simulations. Through scaling analysis, we have identified two stacking regimes that are relevant for on‐chip FASS, depending upon whether the broadening of the stacked peak is dominated by axial diffusion or convective dispersion. We show that these two regimes are characterized by distinct length and time scales, based on which we obtain simplified nondimensional relations for the temporal growth of peak concentration and width in FASS. We first verify the theoretical scaling behavior in diffusion‐ and convection‐dominated regimes using numerical simulations. Thereafter, we show that the experimental data of temporal growth of peak concentration and width at varying electric fields, conductivity gradients, and EOF exhibit the theoretically predicted scaling behavior. The scaling behavior described in this work provides insights into the effect of varying experimental parameters, such as electric field, conductivity gradient, electroosmotic mobility, and electrophoretic mobility of the analyte on the dynamics of on‐chip FASS.  相似文献   

14.
Yeh HH  Yang YH  Ko JY  Chen SH 《Electrophoresis》2008,29(17):3649-3657
Field-amplified sample stacking (FASS) in capillary electrophoresis (CE) was used to determine the concentration of donepezil, an acetylcholinesterase inhibitor, in human plasma. A sample pretreatment by liquid-liquid extraction with isopropanol/n-hexane (v/v 3:97) and subsequent quantification by FASS-CE was used. Before sample loading, a water plug (0.5 psi, 6 s) was injected to permit FASS. Electrokinetic injection (7 kV, 90 s) was used to introduce sample cations. The separation condition for donepezil was performed in electrolyte solutions containing Tris buffer (60 mM, pH 4.0) with sodium octanesulfonate 40 mM and 0.01% polyvinyl alcohol as a dynamic coating to reduce analytes' interaction with capillary wall. The separation was performed at 28 kV and detected at 200 nm. Using atenolol as an internal standard, the linear ranges of the method for the determination of donepezil in human plasma were over a range of 1-50 ng/mL. The limit of detection was 0.1 ng/mL (S/N=3, sampling 90 s at 7 kV). One female volunteer (54 years old) was orally administered a single dose of 10 mg donepezil (Aricept, Eisai), and blood samples were drawn over a 60 h period for pharmacokinetic study. The method was also applied successfully to monitor donepezil in sixteen Alzheimer's disease patients' plasmas.  相似文献   

15.
Several on-column sample preconcentration modes--large-volume sample stacking using the EOF pump (LVSEP), LVSEP with anion-selective exhaustive injection (LVSEP-ASEI) and field-amplified sample injection with sample matrix removal using the electroosmotic flow (EOF) pump (FAEP)--were used to analyze some nonsteroidal anti-inflammatory drugs (NSAIDs) by capillary electrophoresis, and then compared. Methanol was the background electrolyte solvent to suppress the EOF. The effect of the type and length of the solvent plug, and the sample injection time were investigated in FAEP to determine the conditions that provided the best response. LVSEP, LVSEP-ASEI, and FAEP improved the sensitivity of the peak area by 100-, 1200-, and 1800-fold, respectively. The methodology developed, in combination with solid-phase extraction (SPE), was applied to the analysis of water samples.  相似文献   

16.
Theory of field-amplified sample stacking (FASS) also called field-enhanced sample stacking is reevaluated considering the early work of Chien, Burgi and Helmer. The classical theory presented by Chien, Helmer and Burgi predicts the existence of maxima, which are ascribed to the counteracting principles of zone focusing and hydrodynamic dispersion. In contrast to their work, we here focus on cationic analytes separated in an acidic background electrolyte providing a very low electroosmotic flow velocity. Therefore, peak broadening due to differences in the local electroosmotic flow velocities in different compartments of the capillary can be regarded to be negligible. Consequently, peak broadening resulting from hydrodynamic dispersion will not be the dominant limitation of the accessible enrichment efficiency. In our experimental studies we, however, obtain an optimum value for the field enhancement factor (maximum of the enrichment efficiency, when varying the electric conductivity of the sample and the size of the sample injection plug) corresponding to a 10-fold dilution of the BGE in the sample solution. Comparing these experimental data with data modeled according to the revised theory, we show that this limitation of the loadability is caused by the unavoidable decrease of the analyte migration velocity in the BGE compartment of the capillary when injecting of a sample plug of lower electric conductivity (decrease in the local electric field strength). The additional diffusional band broadening limits the obtainable enrichment efficiency.  相似文献   

17.
Xu Y  Wang W  Li SF 《Electrophoresis》2007,28(10):1530-1539
This report describes a method to simultaneously determine 11 low-molecular-weight (LMW) organic acids and 16 chlorinated acid herbicides within a single run by a portable CE system with contactless conductivity detection (CCD) in a poly(vinyl alcohol) (PVA)-coated capillary. Under the optimized condition, the LODs of CE-CCD ranged from 0.056 to 0.270 ppm, which were better than for indirect UV (IUV) detection of the 11 LMW organic acids or UV detection of the 16 chlorinated acid herbicides. Combined with an on-line field-amplified sample stacking (FASS) procedure, sensitivity enhancement of 632- to 1078-fold was achieved, with satisfactory reproducibility (RSDs of migration times less than 2.2%, and RSDs of peak areas less than 5.1%). The FASS-CE-CCD method was successfully applied to determine the two groups of acidic pollutants in two kinds of environmental water samples. The portable CE-CCD system shows advantages such as simplicity, cost effectiveness, and miniaturization. Therefore, the method presented in this report has great potential for onsite analysis of various pollutants at the trace level.  相似文献   

18.
《Electrophoresis》2018,39(17):2195-2201
A sensitive, fast, and effective method, field‐amplified sample stacking (FASS) in capillary electrophoresis, has been established for the separation and determination of corynoxine and corynoxine B. Hydroxypropyl‐β‐CD (HP‐β‐CD) and tetrabutylammonium‐L‐glutamic acid (TBA‐L‐Glu) were used as additives in the separation system. Electrokinetic injection was chosen to introduce sample from inlet at 10 kV for 50 s after a water plug (0.5 psi, 4 s) was injected to permit FASS. The running buffer (pH 6.1) was composed of 40 mM sodium dihydrogen phosphate solution, 130 mM HP‐β‐CD, and 10 mM TBA‐L‐Glu and the separation voltage was 20 kV. Under the optimum conditions, corynoxine and corynoxine B were successfully enriched and separated within 12 min and the sensitivity was improved approximately by 700–900 folds. Calibration curves were in a good linear relationship within the range of 62.5–5.00 × 103 ng/mL for both corynoxine and corynoxine B. The limits of detection (S/N = 3) and quantitation (S/N = 10) were 14.9, 45.2 ng/mL for corynoxine and 11.2, 34.5 ng/mL for corynoxine B, respectively. Finally, this method was successfully applied for the determination of corynoxine and corynoxine B in the stems with hooks of Uncaria rhynchophylla and its formulations.  相似文献   

19.
We developed a novel hybrid sample injection mode (HSIM) that presents the combination of electrokinetic injection and vacuum injection to enhance detection sensitivity in CZE. Samples were introduced using both vacuum and electrokinetic injections simultaneously, with a water plug injected into the capillary prior to sample introduction (i.e. similarly to field-amplified sample injection, FASI). Using a sample mixture containing an anti-fouling agent applied to ship hulls, pyridine-triphenylborane and its degradation products (diphenylborinic acid, phenylboronic acid, and phenol) dissolved in ACN, the length of water plug, time, and voltage for sample introduction were optimized. The signal intensity (peak height) was found to be up to a 30-fold increased using HSIM by applying 4 kV for 4 s at the inlet end of the capillary as the cathode with supplementary vacuum in comparison with only vacuum injection for 4 s. The LODs (at a S/N of 3) for pyridine-triphenylborane, diphenylborinic acid, phenylboronic acid, and phenol were 0.88, 1.0, 21, and 23 μg/L, respectively. At the level of 0.04 mg/L, the RSDs (n=4, intra-day) for the above analytes were in the ranges of 1.9-11, 4.3-9.2, and 0.34-0.66% for peak area, peak height, and migration time, respectively. The HSIM is a simple and promising procedure useful for enhancing the sensitivity for both low-and high-mobility ions in CZE.  相似文献   

20.
Huang HY  Lien WC  Huang IY 《Electrophoresis》2006,27(16):3202-3209
In this study, anion-selective exhaustive injection-sweeping (ASEI-sweeping) technique, which is a selective on-line sample concentration technique, was first proposed in microemulsion electrokinetic chromatography (MEEKC) for analyses of eight acidic phenolic compounds. In contrast to a capillary that is typically filled with nonmicellar background solution in conventional ASEI-sweeping MEKC method, in the proposed ASEI-sweeping MEEKC method, a capillary is filled with a low pH microemulsion solution (pH 2.0), and then with a short acid plug (pH 2.0, 1.9 cm) before field-amplified sample injection. This proposed design has two functions. First, the microemulsion solution that is present at the front of capillary column is able to avoid phase separation of microemulsion solution during MEEKC separation. Second, the presence of the short acid plug would effectively limit the partition behavior of acid analytes with the oil droplets in the microemulsion during field-amplified sample injection; otherwise, the stacking effect of acid analytes would be markedly reduced. This optimal ASEI-sweeping MEEKC method afforded about 96,000-fold to 238,000-fold increases in detection sensitivity in terms of peak areas without any separation efficiency loss when compared to normal MEEKC separation. Furthermore, trace levels (about 3 ng/g) of gallic acid and catechin in foods were also detected successfully by the proposed ASEI-sweeping MEEKC technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号