首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let ${n \in \mathbb{N}\backslash \{0, 1, 2\}}$ . We prove that there exists up to equivalence one and up to isomorphism (n+1)(2n+1) isometric embeddings of the near 2n-gon ${\mathbb{H}_n}$ into the near 2n-gon ${\mathbb{G}_n}$ .  相似文献   

2.
Isometric embeddings of $\mathbb{Z}_{p^n+1}$ into the Hamming space ( $\mathbb{F}_{p}^{p^n},w$ ) have played a fundamental role in recent constructions of non-linear codes. The codes thus obtained are very good codes, but their rate is limited by the rate of the first-order generalized Reed–Muller code—hence, when n is not very small, these embeddings lead to the construction of low-rate codes. A natural question is whether there are embeddings with higher rates than the known ones. In this paper, we provide a partial answer to this question by establishing a lower bound on the order of a symmetry of ( $\mathbb{F}_{p}^{N},w$ ).  相似文献   

3.
4.
A group G is called a ${\mathcal {T}_{c}}$ -group if every cyclic subnormal subgroup of G is normal in G. Similarly, classes ${\mathcal {PT}_{c}}$ and ${\mathcal {PST}_{c}}$ are defined, by requiring cyclic subnormal subgroups to be permutable or S-permutable, respectively. A subgroup H of a group G is called normal (permutable or S-permutable) cyclic sensitive if whenever X is a normal (permutable or S-permutable) cyclic subgroup of H there is a normal (permutable or S-permutable) cyclic subgroup Y of G such that ${X=Y \cap H}$ . We analyze the behavior of a collection of cyclic normal, permutable and S-permutable subgroups under the intersection map into a fixed subgroup of a group. In particular, we tie the concept of normal, permutable and S-permutable cyclic sensitivity with that of ${\mathcal {T}_c}$ , ${\mathcal {PT}_c}$ and ${\mathcal {PST}_c}$ groups. In the process we provide another way of looking at Dedekind, Iwasawa and nilpotent groups.  相似文献   

5.
The Marcinkiewicz integral is essentially a Littlewood-Paley g-function, which plays a very important role in harmonic analysis. In this paper we give weaker smoothness conditions assumed on Ω to imply the boundedness of the Marcinkiewicz integral operator μΩ, where w belongs to the Muckenhoupt weight class.  相似文献   

6.
Let F:M ×\mathbbR ? M {\mathbf{F}}:M \times \mathbb{R} \to M be a continuous flow on a manifold M, let VM be an open subset, and let x:V ? \mathbbR \xi :V \to \mathbb{R} be a continuous function. We say that ξ is a period function if F(x, ξ(x)) = x for all xV. Recently, for any open connected subset VM; the author has described the structure of the set P(V) of all period functions on V. Assume that F is topologically conjugate to some C1 {\mathcal{C}^1} -flow. It is shown in this paper that, in this case, the period functions of F satisfy some additional conditions that, generally speaking, are not satisfied for general continuous flows.  相似文献   

7.
Known upper bounds on the minimum distance of codes over rings are applied to the case of ${\mathbb Z_{2}\mathbb Z_{4}}$ -additive codes, that is subgroups of ${\mathbb Z_{2}^{\alpha}\mathbb Z_{4}^{\beta}}$ . Two kinds of maximum distance separable codes are studied. We determine all possible parameters of these codes and characterize the codes in certain cases. The main results are also valid when ?? = 0, namely for quaternary linear codes.  相似文献   

8.
9.
We give some general results on proper-biharmonic submanifolds of a complex space form and, in particular, of the complex projective space. These results are mainly concerned with submanifolds with constant mean curvature or parallel mean curvature vector field. We find the relation between the bitension field of the inclusion of a submanifold [`(M)]{\bar{M}} in \mathbbCPn{\mathbb{C}P^n} and the bitension field of the inclusion of the corresponding Hopf-tube in \mathbbS2n+1{\mathbb{S}^{2n+1}}. Using this relation we produce new families of proper-biharmonic submanifolds of \mathbbCPn{\mathbb{C}P^n}. We study the geometry of biharmonic curves of \mathbbCPn{\mathbb{C}P^n} and we characterize the proper-biharmonic curves in terms of their curvatures and complex torsions.  相似文献   

10.
The vector space \({\otimes^{n}\mathbb{C}^2}\) upon which the XXZ Hamiltonian with n spins acts bears the structure of a module over both the Temperley–Lieb algebra \({{\rm TL}_{n}(\beta = q + q^{-1})}\) and the quantum algebra \({{\rm U}_{q} \mathfrak{sl}_2}\) . The decomposition of \({\otimes^{n}\mathbb{C}^2}\) as a \({{\rm U}_{q} \mathfrak{sl}_2}\) -module was first described by Rosso (Commun Math Phys 117:581–593, 1988), Lusztig (Cont Math 82:58–77, 1989) and Pasquier and Saleur (Nucl Phys B 330:523–556, 1990) and that as a TL n -module by Martin (Int J Mod Phys A 7:645–673, 1992) (see also Read and Saleur Nucl Phys B 777(3):316–351, 2007; Gainutdinov and Vasseur Nucl Phys B 868:223–270, 2013). For q generic, i.e. not a root of unity, the TL n -module \({\otimes^{n}\mathbb{C}^2}\) is known to be a sum of irreducible modules. We construct the projectors (idempotents of the algebra of endomorphisms of \({\otimes^{n}\mathbb{C}^2}\) ) onto each of these irreducible modules as linear combinations of elements of \({{\rm U}_{q} \mathfrak{sl}_2}\) . When q = q c is a root of unity, the TL n -module \({\otimes^{n}\mathbb{C}^2}\) (with n large enough) can be written as a direct sum of indecomposable modules that are not all irreducible. We also give the idempotents projecting onto these indecomposable modules. Their expression now involves some new generators, whose action on \({\otimes^{n}\mathbb{C}^2}\) is that of the divided powers \({(S^{\pm})^{(r)} = \lim_{q \rightarrow q_{c}} (S^{\pm})^r/[r]!}\) .  相似文献   

11.
This paper is concerned with iterative solution to general Sylvester-conjugate matrix equation of the form $\sum_{i = 1}^{s} A_{i}V + \sum_{j = 1}^{t} B_{j}W = \sum_{l = 1}^{m} E_{l}\overline{V}F_{l} + C$ . An iterative algorithm is established to solve this matrix equation. When this matrix equation is consistent, for any initial matrices, the solutions can be obtained within finite iterative steps in the absence of round off errors. Some lemmas and theorems are stated and proved where the iterative solutions are obtained. Finally, a numerical example is given to verify the effectiveness of the proposed algorithm.  相似文献   

12.
The restriction of a Verma module of ${\bf U}(\mathfrak{sl}_3)$ to ${\bf U}(\mathfrak{sl}_2)$ is isomorphic to a Verma module tensoring with all the finite dimensional simple modules of ${\bf U}(\mathfrak{sl}_2)$ . The canonical basis of the Verma module is compatible with such a decomposition. An explicit decomposition of the tensor product of the Verma module of highest weight 0 with a finite dimensional simple module into indecomposable projective modules in the category $\mathcal O_{\rm{int}}$ of quantum $\mathfrak{sl}_2$ is given.  相似文献   

13.
14.
In this paper, several nonexistence results on generalized bent functions \(f:\mathbb {Z}_{2}^{n} \rightarrow \mathbb {Z}_{m}\) are presented by using the knowledge on cyclotomic number fields and their imaginary quadratic subfields.  相似文献   

15.
We will show that for any positive integer k, there exists a smooth manifold that has no -geodesic.  相似文献   

16.
17.
In this paper, we give some decompositions of triples of Zp^n or Z3p^n into cyclic triple systems. New constructions of difference families are given. Some infinite classes of simple cyclic triple systems are obtained from these decompositions.  相似文献   

18.
Conservative subtheories of ${{R}^{1}_{2}}$ and ${{S}^{1}_{2}}$ are presented. For ${{S}^{1}_{2}}$ , a slight tightening of Je?ábek??s result (Math Logic Q 52(6):613?C624, 2006) that ${T^{0}_{2} \preceq_{\forall \Sigma^{b}_{1}}S^{1}_{2}}$ is presented: It is shown that ${T^{0}_{2}}$ can be axiomatised as BASIC together with induction on sharply bounded formulas of one alternation. Within this ${\forall\Sigma^{b}_{1}}$ -theory, we define a ${\forall\Sigma^{b}_{0}}$ -theory, ${T^{-1}_{2}}$ , for the ${\forall\Sigma^{b}_{0}}$ -consequences of ${S^{1}_{2}}$ . We show ${T^{-1}_{2}}$ is weak by showing it cannot ${\Sigma^{b}_{0}}$ -define division by 3. We then consider what would be the analogous ${\forall\hat\Sigma^{b}_{1}}$ -conservative subtheory of ${R^{1}_{2}}$ based on Pollett (Ann Pure Appl Logic 100:189?C245, 1999. It is shown that this theory, ${{T}^{0,\left\{2^{(||\dot{id}||)}\right\}}_{2}}$ , also cannot ${\Sigma^{b}_{0}}$ -define division by 3. On the other hand, we show that ${{S}^{0}_{2}+open_{\{||id||\}}}$ -COMP is a ${\forall\hat\Sigma^{b}_{1}}$ -conservative subtheory of ${R^{1}_{2}}$ . Finally, we give a refinement of Johannsen and Pollett (Logic Colloquium?? 98, 262?C279, 2000) and show that ${\hat{C}^{0}_{2}}$ is ${\forall\hat\Sigma^{b}_{1}}$ -conservative over a theory based on open cl-comprehension.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号