首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

2.
An ultrasound‐assisted dispersive liquid–liquid microextraction based on solidification of a floating organic drop method followed by high‐performance liquid chromatography was developed for the extraction, preconcentration, and determination of trace amounts of organophosphorus pesticides in rice samples. Variables affecting the performance of both steps were thoroughly investigated. Some effective parameters on extraction were studied and optimized. Under the optimum conditions, recoveries for rice sample are in the range of 58.0–66.0%. The calibration graphs are linear in the range of 4–800 μg/kg and, limits of detection and limits of quantification are in the range of 1.5–3 and 4.2–8.5 μg/kg, respectively. The relative standard deviation for 50.0 μg/kg of organophosphorus pesticides in rice sample are in the range of 4.4–5.1% (n = 5). The obtained results show that proposed method is a fast and simple method for the determination of pesticides in cereals.  相似文献   

3.
A rapid, selective and sensitive sample preparation method based on solid‐phase extraction combined with the dispersive liquid–liquid microextration was developed for the determination of pyrethroid pesticides in wheat and maize samples. Initially, the samples were extracted with acetonitrile and water solution followed phase separation with the salt addition. The following sample preparation involves a solid‐phase extraction and dispersive liquid–liquid microextraction step, which effectively provide cleanup and enrichment effects. The main experimental factors affecting the performance both of solid‐phase extraction and dispersive liquid–liquid microextration were investigated. The validation results indicated the suitability of the proposed method for routine analyze of pyrethroid pesticides in wheat and maize samples. The fortified recoveries at three levels ranged between 76.4 and 109.8% with relative standard deviations of less than 10.7%. The limit of quantification of the proposed method was below 0.0125 mg/kg for the pyrethoroid pesticides. The proposed method was successfully used for the rapid determination of pyrethroid residues in real wheat and maize samples from crop field in Beijing, China.  相似文献   

4.
A sensitive and efficient solid‐phase microextraction method, based on liquid chromatography and UV–Vis detection, was developed and validated as an alternative method for sample screening prior to LC‐MS analysis. It enables the simultaneous determination of ten pesticides in mango fruits. The fiber used was polydimethylsiloxane while optimum SPME conditions employed have been developed and optimized in a previous work. The desorption process was performed in static mode, using acetonitrile as a solvent. The results indicate that the DI‐SPME/HPLC/UV–Vis procedure resulted in good linear range, accuracy, precision and sensibility and is adequate for analyzing pesticide residues in mango fruits. The limits of detection (0.6–3.3 μg/kg) and quantification (2.0–10.0 μg/kg) were achieved with values lower than the maximum residue levels (MRLs) established by Brazilian legislation for all pesticides in this study. The average recovery rates obtained for each pesticide ranged from 71.6 to 104.3% at three fortification levels, with the relative standard deviation ranging from 4.3 to 18.6%. The proposed method was applied for the determination of the aforementioned compounds in commercial mango samples and residues of azoxystrobin, fenthion, permethrin, abamectin and bifenthrin were detected in the mango samples, although below the MRLs established by Brazilian legislation.  相似文献   

5.
液相色谱-串联质谱法测定10种食品中四溴菊酯残留   总被引:1,自引:0,他引:1  
建立了测定蔬菜、水果、茶叶、大豆等10种食品中四溴菊酯残留的高效液相色谱-串联质谱(HPLC-MS/MS)分析方法。样品以乙酸乙酯(蔬菜、水果、茶叶样品)或乙腈(大豆样品)为提取剂,上层有机相经浓缩、固相萃取小柱净化,流动相定容后,采用HPLC在Agilent ZORBAX Eclipse XDB C18色谱柱上,以甲醇和缓冲盐溶液(0.1%甲酸-10 mmol/L乙酸铵)为流动相进行梯度洗脱分离,以串联质谱在多反应监测(MRM)模式下测定,基质外标法定量。结果表明,四溴菊酯的质量浓度在20~1 000μg/L范围内线性关系良好,相关系数为0.999 8;在0.01、0.02、0.1 mg/kg(粮谷类、茶叶、大豆样品)和0.005、0.01、0.05mg/kg(果蔬类样品)加标水平下的回收率为75%~92%,相对标准偏差(RSDs)为4.0%~12.6%(n=6),定量下限(S/N≥10)为0.01 mg/kg(粮谷类、茶叶、大豆样品)和0.005 mg/kg(果蔬类样品)。该方法不受溴氰菊酯干扰,可直接测定四溴菊酯,克服了以往方法只能测定四溴菊酯和溴氰菊酯总量的不足。  相似文献   

6.
利用亚临界水可以定量萃取基质中绝大部分化合物的特点,借助加速溶剂萃取仪(ASE)将亚临界水萃取与固相吸附联用,通过在ASE萃取池中填加C18吸附层的方式改进了萃取吸附模式,优化了萃取温度,研究了亚临界水在萝卜、香瓜、苹果和白菜等蔬果基质中对异稻瘟净等12种农药的萃取效果,用气相色谱-串联质谱法(GC-MS/MS)进行检...  相似文献   

7.
A liquid chromatography-mass spectrometry (LC-MS) method was established for the purpose of simultaneous determination of carbamate and organophosphorus (OPPs) pesticides in fruits and vegetables. Samples were extracted with acetonitrile; and then prepared by dispersive solid-phase extraction (dispersive-SPE) with primary secondary amine (PSA) as the sorbent. Four common representative samples (tomato, apple, carrot, and cabbage) were selected from the supermarket to investigate the effect of different matrices on pesticides recoveries and assay precision after spiking samples with 0.05 mg/kg. Matrix composition did not interfere significantly with the determination of the pesticides. The obtained recoveries were, with a few exceptions, in the range of 70-110% with RSDs less than 8%. It was applied to pesticide residue monitoring in vegetables and fruits from local markets.  相似文献   

8.
The effects of different cleanup procedures in removing high‐molecular‐mass lipids and natural colorants from oil‐crop extracts, including dispersive solid‐phase extraction, low‐temperature precipitation and gel permeation chromatography, were studied. The pigment removal, lipid quantity, and matrix effects of the three cleanup methods were evaluated. Results indicated that the gel permeation chromatography method is the most effective way to compare the dispersive solid‐phase extraction and low‐temperature precipitation. Pyraclostrobin and epoxiconazole applied extensively in oil‐crop production were selected as typical pesticides to study and a trace analytical method was developed by gel permeation chromatography and ultra high performance liquid chromatography with tandem mass spectrometry. Average recoveries of the target pesticides at three levels (10, 50, and 100 μg/kg) were in the range of 74.7–96.8% with relative standard deviation values below 9.2%. The limits of detection did not exceed 0.46 μg/kg, whereas the limits of quantification were below 1.54 μg/kg and much lower than maximum residue limit in all matrices. This study may provide the essential data for optimizing the analytical method of pesticides in oil‐crop samples.  相似文献   

9.
许天钧  苏建峰 《分析测试学报》2017,36(12):1469-1475
采用离子交换净化法,建立了蔬菜水果中15种三唑类农药残留测定的前处理方法。样品用乙腈提取,加入氯化钠均质,离心分层后取部分乙腈层经溶剂转换后过阳离子交换柱净化,所得净化液经浓缩定容后供气相色谱仪(GC)和气相色谱-质谱仪(GC-MS)分析。气相色谱-质谱法采用选择离子扫描方式(SIM),外标法定量。结果表明,在最优条件下15种三唑类农药的定量下限(S/N≥10)均可达到0.01 mg/kg,在0.01、0.05、0.10 mg/kg三个加标水平下的回收率为68%~102%,相对标准偏差为2.4%~16.2%。实验特别考察了该净化方法在气相色谱-电子捕获检测器(ECD)上的适用性,发现各种蔬菜水果(包括葱属蔬菜)均可获得干扰极少的ECD谱图。方法简单、快速,适用于多种蔬菜水果中15种三唑类农药残留的测定。  相似文献   

10.
在系统优化固相萃取吸附剂填料类型、洗脱溶剂种类及体积的基础上,建立了蔬菜和水果中193种农药残留的气相色谱-质谱(GC-MS)检测方法。样品经乙腈均质提取,C18/PSA固相萃取柱净化,乙腈洗脱,GC-MS选择离子监测(SIM)模式检测,以磷酸三苯酯内标法定量。结果表明,130种农药在10~1000 μg/L、34种农药在20~1000 μg/L、26种农药在50~1000 μg/L、3种农药在100~1000 μg/L范围内线性关系良好,相关系数为0.9967~1.0000,方法检出限(以信噪比为3计)为0.04~8.26 μg/kg,添加回收率为71.6%~117.9%,相对标准偏差为3.0%~11.8%。该方法样品处理简单快速,相比其他多残留分析方法净化效果好,其灵敏度和选择性明显提高,适用于日常检测工作。  相似文献   

11.
采用分散固相萃取-气相色谱-串联质谱(QuEChERS-GC-MS/MS)建立了蔬菜中107种农药残留量的分析方法。样品由含1%冰醋酸的正己烷饱和乙腈提取、分散固相萃取法净化,采用气相色谱-串联质谱方法在分时段选择反应监测模式下进行测定,外标法定量。所有农药在0.05~1 mg/L范围内线性关系均良好;所有农药的方法定量限(LOQ)均低于10 μg/kg;在10 μg/kg的添加水平下,大蒜、青刀豆、萝卜和菠菜4种基质中绝大多数农药的平均回收率处于60%~130%之间,相对标准偏差(RSD)不大于15.3%。该方法不仅能用于多种蔬菜基质中107种农药残留的检测,而且还能较好地解决本底成分相当复杂的大蒜基质极易出现的干扰问题。  相似文献   

12.
Multivariate response surface methodology optimization using Placket–Burman and Box–Behnken designs were respectively used for the screening and optimization of significant factors for liquid chromatography–tandem mass spectrometry. Consequently, the optimized instrument successfully improved the sample preparation protocol and the method was validated. However, modified QuEChERS dispersive solid phase extraction coupled with ionic liquid-based dispersive liquid–liquid microextraction were used for the determination of multi-pesticide residues in fruit and vegetable samples. The analysed samples were jackfruit, strawberries, cucumber, pears, and carrots. The resulting linearity range (5–400?µg/kg) and regression coefficient (>0.99) results were satisfactory. The 94.2 and 95.8% accuracy (89–138%) and precision (0–25%) results were satisfactory and within the recommended ranges (≤20%) and (70–120%), respectively. The limits of detection (0.01–0.54?µg/kg) and quantitation (0.03–1.79?µg/kg) were excellent. The matrix effects (≤?87%) for all analysed samples were not significant. The estimated measurement uncertainties (≤27%) were within the acceptable range (≤50%). Justifiably, the response surface methodology optimized instrument and sample treatment techniques were reliable and convenient for multi-pesticide residue determination in various fruits and vegetables.  相似文献   

13.
Three types of molecularly imprinted solid‐phase microextraction fibers were fabricated through sol‐gel method using diazinon, parathion‐methyl, and isocarbophos as templates, respectively, and assembled together to construct a multifiber for analysis of organophosphorus pesticides in complex matrices. The multifiber provided large extraction capacity and high imprinting factor up to 3.89. In contrast, the imprinting factor of a single fiber was around 1.6, and the multi‐template imprinted coating showed no selectivity. The multifiber was applied to analyze pesticides in fruits and vegetables. The limits of detection, which ranged from 0.0052 to 0.23 µg/kg, were lower than those obtained by a single molecularly imprinted fiber, and much lower than those reported by other methods. The recoveries of five analytes in spiked apple, cucumber, Chinese cabbage, and cherry tomato samples were 75.1–123.2%. The study shows that the molecularly imprinted multifiber could achieve simultaneous selective extraction and sensitive determination of multiple targets in complex matrices for high‐throughput analysis.  相似文献   

14.
利用固相萃取-液相色谱-飞行时间质谱(SPE-LC-Q-TOF/MS)技术建立了谷物、 蔬菜和水果中25种杀菌剂农药残留的快速筛查和确证检测方法.样品经1%(V/V)乙酸-乙腈溶液提取,经Crabon/NH2柱净化,乙腈-甲苯(3∶1, V/V)洗脱,C18色谱柱分离,乙腈和0.1% 甲酸溶液(含5 mmol/L乙酸铵)梯度洗脱,采用LC-Q-TOF/MS检测,外标法定量.建立了25种杀菌剂的一级精确质量数据库和二级谱图库,通过化合物的精确质量数、 保留时间、 同位素峰分布、 同位素比例等信息对检测结果进行自动检索,在无对照标准品的情况下实现了25种农药的定性鉴定.结果表明,25种杀菌剂在0.02~200 μg/L范围内线性关系良好,相关系数R2≥0.9950, 加标回收率在71.8%~114.0%之间,相对标准偏差(RSD)为0.1%~21.3% (n=3).25种杀菌剂检出限为0.01~5.00 μg/kg,定量限为0.02~20.00 μg/kg.本方法简便、 快速、 可靠,可用于谷物、 蔬菜、 水果中25种杀菌剂的快速筛查.  相似文献   

15.
A high‐throughput, rapid, and efficient modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method with a simple cleanup procedure has been developed for simultaneously determining 227 pesticides in pepper samples by liquid chromatography with tandem mass spectrometry (running time: 10 min). Pesticide residues were extracted/partitioned with an acetonitrile/DisQuE QuEChERS pouch, and the resulting samples were cleaned up with different methods: dispersive solid‐phase extraction with primary secondary amines or multiwalled carbon nanotubes and graphitized carbon solid mini cartridge column. The results indicated that multiwalled carbon nanotubes dispersive sorbents achieved the best recoveries and had less matrix interference. The numbers of pesticides with a recovery in the range of 70–120% were 199 at a spiked level of 40 μg/kg. The correlation coefficients (r2) for 227 pesticides were above 0.99, while the limits of quantitation of pesticides in pepper samples ranged from 0.13 to 13.51 μg/kg (S/N = 10), and the limits of detection ranged from 0.04 to 4.05 μg/kg (S/N = 3). The relative standard deviations of approximately 197 pesticides were below 20% at spiked levels of 40 μg/kg. Based on these results, the proposed method was chosen as the most suitable cleanup procedure for the determination of multiresidue pesticides in pepper samples.  相似文献   

16.
A simple and rapid multiplug filtration cleanup method based on multiwalled carbon nanotubes was developed to determine 124 pesticide residues in rice, wheat, and corn, which could be done in a few seconds without conditioning and elution steps. Various combinations of sorbents were optimized for each matrix with a dispersive solid‐phase extraction procedure to get a satisfactory recovery and clean‐up performance. Good linearity was obtained for all pesticides with calibration curve coefficients larger than 0.9958. Most recoveries for the majority pesticides were between 70 and 120% (n = 5) with relative standard deviations below 20%. The limit of detection was 0.1–1.3 μg/kg, and the limit of quantification was 0.2–4.3 μg/kg for the pesticides in all matrices. The work suggests that the multiplug filtration cleanup method is better than the dispersive solid‐phase extraction method and it could be applied to routinely monitor pesticide residues in market samples.  相似文献   

17.
This paper described a simple, rapid and efficient method for the determination of N-methyl carbamate pesticides in tomato, cucumber, carrot and lettuce samples by dispersive liquid-liquid microextraction coupled with HPLC-diode array detection. Some experimental parameters that influenced the extraction efficiency, such as types and volumes of extraction and disperser solvents, extraction time and salt effect were examined and optimized. Under optimum conditions, the LOD of the method were 0.5-3.0 μg/kg depending on the compounds and the kind of vegetables. The linearities of the method were obtained in the range of 10.0-300 μg/kg for aldicarb, MTMC, carbofuran and carbaryl, and 20.0-600 μg/kg for isoprocarb, with the correlation coefficients ranging from 0.9921 to 0.9993. The RSD varied from 2.9 to 7.5% (n=5). The recoveries of the method for the five carbamates from vegetable samples at two different spiking levels were ranged from 77.8 to 98.2%. Results showed that the method we proposed can meet the requirements for the determination of N-methyl carbamate in vegetable samples and was finally applied to the analysis of target pesticides in vegetable samples taken from local markets.  相似文献   

18.
建立了蔬菜和水果中双三氟虫脲、四氯虫酰胺和氰虫酰胺3种新型杀虫剂的分散固相萃取-液相色谱-串联质谱检测方法.样品经乙腈均质提取,混合使用乙二胺-N-丙基硅烷(PSA)和C18基质分散净化剂进行净化,液相色谱-三重四极杆串联质谱(LC-MS/MS)同时进行检测.双三氟虫脲和四氯虫酰胺采用多反应监测负离子模式,氰虫酰胺采用多反应监测正离子模式.双三氟虫脲在苹果、洋葱和经微波处理的洋葱样品中均不存在基质效应,可采用纯溶剂标准外标法或者采用基质匹配标准溶液定量检测; 四氯虫酰胺和氰虫酰胺存在程度不同的基质减弱效应,采用空白基质匹配的校正标准曲线外标法定量.3种杀虫剂均在0.2~100 μg/L线性范围内具有良好的线性关系,相关系数均大于0.9990.在0.005~2.000 mg/kg范围内,平均添加回收率为81.6%~99.9%,相对标准偏差为3.6%~9.8%.氰虫酰胺、四氯虫酰胺和双三氟虫脲的检出限分别为0.064,0.048和0.001 μg/kg,定量限分别为0.210, 0.160和0.004 μg/kg.  相似文献   

19.
采用改进的分散固相萃取(QuEchERs)法对样品进行前处理,建立水果和蔬菜中毒杀芬残留的气相色谱–负化学电离源质谱(GC–NCI–MS)检测方法。样品中的毒杀芬由正己烷提取,经吸附剂PSA+GCB净化,在GC–NCI–MS的选择离子扫描模式下进样分析。毒杀芬的色谱保留时间在12.5~18.0 min区间内,采用面积归一化法积分,外标法定量。毒杀芬质量浓度在0.050~2.000 mg/L范围内与色谱峰面积呈良好的线性关系,相关系数r=0.999 1。分别以蓝莓、黄桃、菠菜为基质,在0.025,0.050 mg/kg添加水平下,毒杀芬的回收率为107.2%~118.1%,测定结果的相对标准偏差为5.5%~8.8%(n=6),定量限为0.025 mg/kg。该方法检测快速,适用于水果和蔬菜中毒杀芬残留的日常检测。  相似文献   

20.
采用分散固相萃取和分散液液微萃取联用方法,建立了气相色谱-串联质谱法(GC-MS/MS)同时测定蔬菜中19种有机磷农药残留量的分析方法。分散固相萃取方法以乙腈为萃取液,以N-丙基-乙二胺(PSA)和C18为吸附剂。对影响分散液液微萃取效率的因素(萃取溶剂种类及体积、分散剂体积等)进行优化,同时分析了实验过程中添加掩蔽试剂L-古洛糖酸γ-内酯(AP)对基质效应补偿作用的影响。在最佳实验条件下,19种有机磷在辣椒和大葱中3个添加水平(0.05,0.1,0.5 mg/kg)的回收率为76.9%~126.8%,相对标准偏差为0.6%~7.3%,检出限(S/N=3)为0.10~0.50μg/kg。该方法简单、高效、重现性好、富集倍数高,可用于蔬菜中有机磷农药的快速检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号