首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Journal of Applied Spectroscopy - Optical correlation methods for the analysis of gas mixtures with a quasi-periodic spectrum structure are described. The design of a device for demonstrating the...  相似文献   

2.
Abstract

An extrinsic Fabry–Perot optical fiber sensor based on nano-magnetic fluid and a Fabry–Perot interference is presented for magnetic field measurement. The sensing fiber end is coated with a thin film of SU-8 photoresist; immersing it into a nano-magnetic fluid forms a magnetic-field-dependent extrinsic Fabry–Perot interference. The relationship between the fringe contrast and magnetic field is analyzed in different concentrations of the magnetic fluid, and the concentration of 25% is most suitable for the measurement of the magnetic field intensity. The stability of the sensor is also addressed.  相似文献   

3.
4.
A theoretical model of fourwave mixing in a Fabry–Perot interferometer with resonant nonlinearity has been developed. The conditions for the realization of the effect of interferometer transmission symmetry breaking and the specific features of the formation of spacetime structures of light fields have been analyzed. The laws of hysteresis of the lateral laser beam profiles have been established.  相似文献   

5.
Fringe-imaging Fabry–Perot interferometer (FIFPI) and fringe-imaging Mach–Zehnder interferometer (FIMZI) used as frequency discriminator for incoherent molecular Doppler lidar were analyzed, respectively. For a pure molecular backscattered signal, performances (wind measurement sensitivity and signal-to-noise ratio) of both FIFPI and FIMZI systems were simulated based on the U.S. standard atmospheric model. Comparisons of two systems were made under the same emitting and receiving parameters with certain wind speed dynamic range. Simulated results show that, though relatively lower sensitivity to Doppler shift, the single-channel FIMZI system provides a factor of 1.3 times smaller error in the horizontal wind velocity than that of FIFPI at a range of 20 km. We expect that the FIMZI frequency discriminator would provide an effective technique to improve the measurement accuracy for incoherent molecular Doppler lidar.  相似文献   

6.
In this work, we investigate the interaction between a single quantum emitter and dimer nanoantennas through a Fabry–Perot structure composed of an appropriate combination of two dielectric layers. This type of dielectric configuration is well known in the microwave region to increase the antenna performance, such as directivity, radiation efficiency, and radiation resistance. Here, the Fabry–Perot concept is transposed to the optical domain. The single emitter couples to the antenna through the dielectric structure, giving rise to a wide aperture field on top of the dielectrics with the same polarization of the emitter. This purely polarized aperture field can be used to excite one or more conveniently spaced nanoantennas. We demonstrate by 3D numerical calculations that the directivity and excitation rate of a single dimer is highly increased. Also, we show that multiple dimers arranged in an array configuration can be enhanced due to the wide aperture field generated by a single emitter.  相似文献   

7.
8.
Optics and Spectroscopy - It is proposed to use the phase properties of a reflective interferometer upon oblique incidence for spectral selection in lasers. The effect is achieved due to the...  相似文献   

9.
10.
A nanometric surface plasmon polariton (SPP) filter based on a vertical coupled metal–insulator–metal (MIM) Fabry–Perot resonator is proposed and analyzed. The transmission characteristics of the SPP filter are analyzed in detail by using the finite difference time domain method. And the resonance condition derived by the numerical method is consonant with the analytic model based on the Fabry–Perot model, which includes the metal loss and dispersion effects. And the simulation results show that multiple transmission dips can be formed and the resonance wavelengths of the transmission dips can be altered by the Fabry–Perot cavity length and width. Also the extinction ratio and the quality factor of the filter are affected by the barrier thickness of the coupling region. The proposed nanometric plasmonic filter is simple and very promising for the SPP waveguides platform.  相似文献   

11.
This study presents a simple, cost-effective and sensitive air-gap fiber Fabry–Perot interferometer (AG-PPFI) which is based on a metal Tin (Sn)-overlaying fiber technique. An extremely small drop of metallic Sn was heated and then melted to shrink into a microsphere owing to the cohesion of the material. When a fiber was inserted into the melting Sn microsphere, an air gap was naturally formed between the fiber endface and the metal Sn during the cooling process. By carefully controlling the reaction time, various air-gaps can be formed as the Fabry–Perot interferometric cavities for the proposed AG-PPFIs. Measurements reveal that a smaller length of air-gap and heavier mass of Sn-microsphere are associated with higher sensitivity of temperature, but the former is dominated. A best temperature sensitivity of wavelength shift with +4.3 nm/°C is achieved when the air-gap is about 5 μm with mass of Sn-microsphere of about 10 μg. The variation of the wavelength shift is equivalent to sensitivity for a change in the cavity length of +14.83 nm/°C.  相似文献   

12.
Control of the operating point of an interferometric optical sensor to produce the highest sensitivity is crucial in the demodulation of interferometric optical sensors to compensate for Q point mismatching. A new method for operating point control of FFPI was discussed and demonstrated, the relationship of the F–P cavity length, the visibility and the interferometric fringe was analyzed. MCU was introduced to tracing the Q point by changing the laser wavelength through adjusting the light source temperature. It is proved that the dynamic range of the sensor system is surely extended; the NSR could be greatly improved because the wavelength change induced noises is greatly limited in this sensor system.  相似文献   

13.
PureDispersiveOpticalBistabilityofFour-levelSysteminaFabry-PerotCavity¥JIYing;LINFucheng(ShanghaiInstituteofOpticsandFineMech...  相似文献   

14.
The effect electronic tuning has on the frequency of the acoustic resonance of an acousto-optic modulator intended for active laser mode locking is studied theoretically and experimentally. The problem of exciting a Fabri–Perot acoustic resonator with a plate-like piezoelectric transducer is solved in the approximation of plane acoustic waves, with allowance for the real parameters of the HF generator and the matching elements of the transducer and the generator. Expressions for the basic electrical and acoustic parameters are obtained. Theoretical analysis confirms the frequency shift effect of acoustic resonances, observed earlier experimentally upon varying the matching electrical elements. The experiment is performed using an acousto-optic quartz cell and a lithium niobate transducer.  相似文献   

15.
In this paper we present a theoretical and experimental study of the dynamical behaviour of birefringent cavities. Our experimental data show that usual hypothesis which provides that a Fabry–Perot cavity is a first-order low-pass filter cannot explain the behaviour of a birefringent cavity. We explain this phenomenon and give the theoretical expression of the equivalent cavity filter which corresponds to a second-order low-pass filter.  相似文献   

16.
A miniature fiber-optic refractometer based on Fabry–Perot interferometer (FPI) has been proposed and experimentally demonstrated. The sensing head consists of a short section of photonics crystal fiber (PCF) spliced to a single mode fiber (SMF), in which the end-face of the PCF is etched to remove holey structure with hydrofluoric (HF) acid. A Fabry–Perot interference spectrum is achieved based on the reflections from the fusion splicing interface and the end-face of the core of PCF. The interference fringe is sensitive to the external refractive index (RI) with an intensity-referenced sensitivity of 358.27 dB/RIU ranging from 1.33 to 1.38. The sensor has also been implemented for the concentration measurement of λ-phage DNA solution. In addition, the dip intensity is insensitive to the ambient temperature variation, making it a good candidate for temperature-independent bio-sensing area.  相似文献   

17.
It is shown that in the region of resonant transitions the dependence of the area under the contour of the Fabry–Perot interference bands on the frequency minus the area under the envelope of the minima reflects the character of the dispersion of light absorptance.  相似文献   

18.
《Current Applied Physics》2001,1(2-3):175-181
We investigated the optical properties of the tris(8-hydroxyquinoline)aluminum (Alq3) organic film with Fabry–Perot microcavity by measuring photoluminescence (PL) and transmittance. We have simulated the phase change on reflection as a function of wavelength. The Fabry–Perot microcavity structures were designed according to the simulation results and the resonant wavelength corresponding to the maximum of PL spectrum of a bare Alq3 film. These structures were fabricated in three types of microcavities, such as type A [air|metal|Alq3|metal|glass], type B [air|dielectric|Alq3|dielectric|glass], and type C [air|metal|Alq3|dielectric|glass]. A bare Alq3 layer on glass, [air|Alq3|glass], showed a PL peak around 514 nm and its full width at half maximum (FWHM) was about 80 nm. The broad FWHM of the bare Alq3 film was reduced to 15–27.5, 7–10.5 and 16–16.6 nm for three types by cavity effects. Also, the control of the resonant wavelength can be achieved by the spacer length as well as the phase change on reflection on mirror.  相似文献   

19.
Optical and Quantum Electronics - Elastic optical network (EON) is considered as the platform for future optical transport networks. Routing and spectrum allocation (RSA) has a significant bearing...  相似文献   

20.
The Letter reports the thermal stability and strain response of Fabry–Perot(FP) cavity under different high temperatures. The FP cavity was made by thermal regeneration of two identical cascaded fiber Bragg gratings(FBGs). It is demonstrated that the FP cavity is capable of measuring temperatures from 300℃ to 900℃ with a temperature sensitivity of 15.97 pm/℃. The elongation of the fiber was observed through the drifted Bragg wavelength at 700℃ or above when weight was loaded. The elongation was further inferred by the slight change in the interference spectra of the FP cavity at 900℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号