首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cosmological model of dark energy interacting with dark matter and another general component of the universe is considered. The equations for the coincidence parameters r and s, which represent the ratios between dark energy and dark matter and the other cosmic fluid respectively, are analyzed in terms of the stability of stationary solutions. The obtained general results allow to shed some light on the equations of state of the three interacting fluids, due to the constraints imposed by the stability of the solutions. We found that for an interaction proportional to the sum of the dark energy density and the third fluid density, the hypothetical fluid must have positive pressure, which leads naturally to a cosmological scenario with radiation, unparticle or even some form of warm dark matter as the third interacting fluid.  相似文献   

2.
In this paper, we study interacting extended Chaplygin gas as dark matter and quintessence scalar field as dark energy with an effective Λ-term in Lyra manifold. As we know Chaplygin gas behaves as dark matter at the early universe while cosmological constant at the late time. Modified field equations are given and motivation of the phenomenological models discussed in details. Four different models based on the interaction term are investigated in this work. Then, we consider other models where Extended Chaplygin gas and quintessence field play role of dark matter and dark energy respectively with two different forms of interaction between the extended Chaplygin gas and quintessence scalar field for both constant and varying Λ. Concerning to the mathematical hardness of the problems we discuss results numerically and graphically. Obtained results give us hope that proposed models can work as good models for the early universe with later stage of evolution containing accelerated expansion.  相似文献   

3.
Within the scope of an anisotropic Bianchi type-V cosmological model we have studied the evolution of the universe. The assumption of a diagonal energy-momentum tensor leads to some severe restriction on the metric functions, which on its part imposes restriction on the components of the energy momentum tensor. This model allows anisotropic matter distribution. Further using the proportionality condition that relates the shear scalar (σ) in the model with the expansion scalar (?) and the variation law of Hubble parameter, connecting Hubble parameter with volume scale. Exact solution to the corresponding equations are obtained. The EoS parameter for dark energy as well as deceleration parameter is found to be the time varying functions. A qualitative picture of the evolution of the universe corresponding to different of its stages is given using the latest observational data.  相似文献   

4.
In this work, we have calculated the deceleration parameter, statefinder parameters and EoS parameters for different dark energy models with variable G correction in homogeneous, isotropic and non-flat universe for Kaluza-Klein Cosmology. The statefinder parameters have been obtained in terms of some observable parameters like dimensionless density parameter, EoS parameter and Hubble parameter for holographic dark energy, new agegraphic dark energy and generalized Chaplygin gas models.  相似文献   

5.
In this work we consider the entropy-corrected version of interacting holographic dark energy (HDE), in the non-flat universe enclosed by apparent horizon. Two corrections of entropy so-called logarithmic ‘LEC’ and power-law ‘PLEC’ in HDE model with apparent horizon as an IR-cutoff are studied. The ratio of dark matter to dark energy densities u, equation of state parameter w D and deceleration parameter q are obtained. We show that the cosmic coincidence problem is solved for interacting models. By studying the effect of interaction in EoS parameter of both models, we see that the phantom divide may be crossed and also understand that the interacting models can drive an acceleration expansion at the present and future, while in non-interacting case, this expansion can happen only at the early time. The graphs of deceleration parameter for interacting models, show that the present acceleration expansion is preceded by a sufficiently long period deceleration at past. Moreover, the thermodynamical interpretation of interaction between LECHDE and dark matter is described. We obtain a relation between the interaction term of dark components and thermal fluctuation in a non-flat universe, bounded by the apparent horizon. In limiting case, for ordinary HDE, the relation of interaction term versus thermal fluctuation is also calculated.  相似文献   

6.
We consider the interaction between dark matter and dark energy in the framework of holographic dark energy, and propose a natural and physically plausible form of interaction, in which the interacting term is proportional to the product of the powers of the dark matter and dark energy densities. We investigate the cosmic evolution in such models. The impact of the coupling on the dark matter and dark energy components may be asymmetric. While the dark energy decouples from the dark matter at late time, just as other components of the cosmic fluid become decoupled as the universe expands, interestingly, the dark matter may actually become coupled to the dark energy at late time. We shall call such a phenomenon incoupling. We use the latest type Ia supernovae data from the SCP team, baryon acoustics oscillation data from SDSS and 2dF surveys, and the position of the first peak of the CMB angular power spectrum to constrain the model. We find that the interaction term which is proportional to the first power product of the dark energy and dark matter densities gives an excellent fit to the current data.  相似文献   

7.
This work is motivated by the work of Kim et al. (Mod. Phys. Lett. A 23:3049, 2008), which considered the equation of state parameter for the new agegraphic dark energy based on generalized uncertainty principle coexisting with dark matter without interaction. In this work, we have considered the same dark energy interacting with dark matter in emergent, intermediate and logamediate scenarios of the universe. Also, we have investigated the statefinder, kerk and lerk parameters in all three scenarios under this interaction. The energy density and pressure for the new agegraphic dark energy based on generalized uncertainty principle have been calculated and their behaviors have been investigated. The evolution of the equation of state parameter has been analyzed in the interacting and non-interacting situations in all the three scenarios. The graphical analysis shows that the dark energy behaves like quintessence era for logamediate expansion and phantom era for emergent and intermediate expansions of the universe.  相似文献   

8.
Within the scope of an anisotropic Bianchi type-VI cosmological model we have studied the evolution of the universe filled with perfect fluid and dark energy. To get the deterministic model of Universe, we assume that the shear scalar (σ) in the model is proportional to expansion scalar (?). This assumption allows only isotropic distribution of fluid. Exact solution to the corresponding equations are obtained. The EoS parameter for dark energy as well as deceleration parameter is found to be the time varying functions. Using the observational data qualitative picture of the evolution of the universe corresponding to different of its stages is given. The stability of the solutions obtained is also studied.  相似文献   

9.
In the paper, we apply the weak gravity conjecture to the holographic quintessence model of dark energy. Three different holographic dark energy models are considered: without the interaction in the non-flat universe; with interaction in the flat universe; with interaction in the non-flat universe. We find that
only in the models with the spatial curvature and interaction term proportional to the energy density of matter, it is possible for the weak gravity conjecture to be satisfied. And it seems that the weak gravity conjecture favors an open universe and the decaying of matter into dark energy.  相似文献   

10.
A unified model of dark energy and matter is presented using the modified variable Chaplygin gas for interacting dark energy in a non-flat universe. The two entities interact with each other non-gravitationally, which involves a coupling constant. Due to dynamic interaction, a variation in this constant arises that henceforth changes the equations of state of these quantities. We have derived the effective equations of state corresponding to matter and dark energy in this interacting model. Moreover, the case of phantom energy is deduced by putting constraints on the parameters involved.  相似文献   

11.
FRW universe in Horava-Lifshitz (HL) gravity model filled with a combination of dark matter and dark energy in the form of variable modified Chaplygin gas (VMCG) is considered. The permitted values of the VMCG parameters are determined by the recent astrophysical and cosmological observational data. Here we present the Hubble parameter in terms of the observable parameters Ω d m0, Ω v m c g0, H 0, redshift z and other parameters like α, A, γ and n. From Stern data set (12 points), we have obtained the bounds of the arbitrary parameters by minimizing the χ 2 test. The best-fit values of the parameters are obtained by 66 %, 90 % and 99 % confidence levels. Next due to joint analysis with BAO and CMB observations, we have also obtained the bounds of the parameters (A, γ) by fixing some other parameters α and n. The best fit value of distance modulus μ(z) is obtained for the VMCG model in HL gravity, and it is concluded that our model is perfectly consistent with the union2 sample data.  相似文献   

12.
A new dark energy model called “ghost dark energy” was recently suggested to explain the observed accelerating expansion of the universe. This model originates from the Veneziano ghost of QCD. The dark energy density is proportional to Hubble parameter, ρ Λ = α H, where α is a constant of order \({\Lambda }^{3}_{QCD}\) and Λ Q C D ~ 100M e V is QCD mass scale. In this paper, we investigate about the stability of generalized QCD ghost dark energy model against perturbations in the anisotropic background. At first, the ghost dark energy model of the universe with spatial BI model with/without the interaction between dark matter and dark energy is discussed. In particular, the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy model are obtained. Then, we use the squared sound speed \({v_{s}^{2}}\) the sign of which determines the stability of the model. We explore the stability of this model in the presence/absence of interaction between dark energy and dark matter in both flat and non-isotropic geometry. In conclusion, we find evidence that the ghost dark energy might can not lead to a stable universe favored by observations at the present time in BI universe.  相似文献   

13.
In this review we discuss the evolution of the universe filled with dark energy with or without perfect fluid. In doing so we consider a number of cosmological models, namely Bianchi type I, III, V, VI0, VI and FRW ones. For the anisotropic cosmological models we have used proportionality condition as an additional constrain. The exact solutions to the field equations in quadrature are found in case of a BVI model. It was found that the proportionality condition used here imposed severe restriction on the energy-momentum tensor, namely it leads to isotropic distribution of matter. Anisotropic BVI0, BV, BIII and BIDE models with variable EoS parameter ω have been investigated by using a law of variation for the Hubble parameter. In this case the matter distribution remains anisotropic, though depending on the concrete model there appear different restrictions on the components of energy-momentum tensor. That is why we need an extra assumption such as variational a law for the Hubble parameter. It is observed that, at the early stage, the EoS parameter v is positive i.e. the universe was matter dominated at the early stage but at later time, the universe is evolving with negative values, i.e., the present epoch. DE model presents the dynamics of EoS parameter ω whose range is in good agreement with the acceptable range by the recent observations. A spatially homogeneous and anisotropic locally rotationally symmetric Bianchi-I space time filled with perfect fluid and anisotropic DE possessing dynamical energy density is studied. In the derived model, the EoS parameter of DE (ω(de)) is obtained as time varying and it is evolving with negative sign which may be attributed to the current accelerated expansion of Universe. The distance modulus curve of derived model is in good agreement with SNLS type Ia supernovae for high redshift value which in turn implies that the derived model is physically realistic. A system of two fluids within the scope of a spatially flat and isotropic FRW model is studied. The role of the two fluids, either minimally or directly coupled in the evolution of the dark energy parameter, has been investigated. In doing so we have used three different ansatzs regarding the scale factor that gives rise to a variable decelerating parameter. It is observed that, in the non-interacting case, both the open and flat universes can cross the phantom region whereas in the interacting case only the open universe can cross the phantom region. The stability and acceptability of the obtained solution are also investigated.  相似文献   

14.
We extend the holographic Ricci dark energy model to include some direct, non-gravitational interaction between dark energy and dark matter. We consider three phenomenological forms for the interaction term Q in the model, namely, Q is taken proportional to the Hubble expansion rate and the energy densities of dark sectors (taken to be ?? de, ?? m, and ?? de+?? m, respectively). We obtain a uniform analytical solution to the three interacting models. Furthermore, we constrain the models by using the latest observational data, including the 557 Union2 type Ia supernovae data, the cosmic microwave background anisotropy data from the 7-yr WMAP, and the baryon acoustic oscillation data from the SDSS. We show that in the interacting models of the holographic Ricci dark energy, a more reasonable value of ?? m0 will be obtained, and the observations favor a rather strong coupling between dark energy and dark matter.  相似文献   

15.
陈菊华  王永久 《中国物理 B》2010,19(1):10401-010401
In this paper we investigate the evolution of the cosmology model with dark energy interacting with massive neutrinos and dark matter. Using the numerical method to investigate the dynamical system, we find that the stronger the interaction between dark energy and dark matter, the lower the ratio of dark matter in the universe is; also, the stronger the interaction between dark energy and massive neutrinos, the lower the ratio of massive neutrinos in the universe is. On the other hand, the interaction between dark energy and dark matter or massive neutrinos has an effect on disturbing the universe's acceleration; we also find that our universe is still accelerating.  相似文献   

16.
In this paper, author studied homogeneous and anisotropic Bianchi type-V universe filled with matter and holographic dark energy (DE) components. The exact solutions to the corresponding Einstein’s field equations are obtained for exponential and power-law volumetric expansion. The holographic dark energy (DE) EoS parameter behaves like constant, i.e. ω Λ =?1, which is mathematically equivalent to cosmological constant (Λ) for exponential expansion of the model, whereas the holographic dark energy (DE) EoS parameter behaves like quintessence for power-law expansion of the model. A correspondence between the holographic dark energy (DE) models with the quintessence dark energy (DE) is also established. Quintessence potential and dynamics of the quintessence scalar field are reconstructed, which describe accelerated expansion of the universe. The statefinder diagnostic pair {r,s} is adopted to characterize different phases of the universe.  相似文献   

17.
We have investigated the model of dark energy interacting with dark matter by choosing inhomogeneous equations of state for the dark energy and a nonlinear interaction term for the underlying interaction. The equations of state have dependencies either on the energy densities, the redshift, the Hubble parameter or the bulk viscosity. We have considered these possibilities and have derived the effective equations of state for the dark energy in each case.  相似文献   

18.
In this work, we have considered that the anisotropic universe is filled with normal matter and phantom field (or tachyonic field). We have chosen the exponential forms of scale factors a and b in such a way that there is no singularity for evolution of the anisotropic universe. Here we have shown that the emergent scenario is possible for open, closed or flat universe if the universe contains phantom field or tachyonic field or phantom tachyonic field. From recently developed statefinder parameters, the behaviour of different stages of the evolution of the emergent universe have been generated.  相似文献   

19.
Some new exact solutions of Einstein’s field equations have come forth within the scope of a spatially homogeneous and anisotropic Bianchi type-III space-time filled with barotropic fluid and dark energy by considering a variable deceleration parameter. We consider the case when the dark energy is minimally coupled to the perfect fluid as well as direct interaction with it. Under the suitable condition, the anisotropic models approach to isotropic scenario. We also find that during the evolution of the universe, the equation of state (EoS) for dark energy ω (de), in both cases, tends to ?1 (cosmological constant, ω (de)=?1), by displaying various patterns as time increases, which is consistent with recent observations. The cosmic jerk parameter in our derived models are in good agreement with the recent data of astrophysical observations under appropriate condition. It is observed that the universe starts from an asymptotic Einstein static era and reaches to the ΛCDM model. So from recently developed Statefinder parameters, the behaviour of different stages of the universe has been studied. The physical and geometric properties of cosmological models are also discussed.  相似文献   

20.
We consider the new agegraphic model of dark energy with a varying gravitational constant, G, in a non-flat universe. We obtain the equation of state and the deceleration parameters for both interacting and noninteracting new agegraphic dark energy. We also present the equation of motion determining the evolution behavior of the dark energy density with a time variable gravitational constant. Finally, we generalize our study to the case of viscous new agegraphic dark energy in the presence of an interaction term between both dark components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号