首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
用Nd:YAG脉冲激光烧蚀金属Al靶获得等离子体,激光脉冲能量为115mJ.pulse^-1,用氮气作保护气体,压强为1个大气压,获得激光诱导Al等离子体的时间分辨谱。分析了Al等离子体辐射特征。根据连续辐射时间分布,对吸收谱的形成作了简单的解释,认为Al原子对连续辐射的共振中收是形成吸收谱中的“凹谷”的主要机制。  相似文献   

2.
用Nd :YAG激光烧蚀Al靶获得等离子体 ,激光脉冲能量为 145mJ·pulse-1,光源中通入Ar气作保护气体 ,压强为 10 0Pa。利用时间分辨技术获得纳秒级时间分辨光谱。分析了等离子体连续辐射、连续辐射的吸收、Al原子谱线辐射的时间演化规律 ,并进行了简短的讨论。结果发现 ,低真空时激光诱导Al等离子体的连续辐射、连续辐射的吸收、Al原子谱线辐射的时间演化规律以及它们之间的相互关系 ,与常压时的情况十分相似  相似文献   

3.
激光诱导Al等离子体连续辐射的时间分布   总被引:9,自引:0,他引:9  
宋一中  李亮 《光学学报》2001,21(4):04-409
用Ar作环境气体,压强固定在10kPa,每个激光脉冲能量为115mJ,利用时空分辨技术,采集激光烧蚀Al靶产生的等离子体辐射的时间分辨谱。分析了Al等离子体连续辐射特征。简要讨论了激光诱导等离子体连续辐射的产生机理。提出了原子对激光诱导等离子体连续辐射共振吸收理论。激光诱导等离子体的连续辐射的主要机制是轫致辐射和复合辐射,在激光脉冲作用到靶面瞬间,轫致辐射占主导地位;等离子体演化初期,复合辐射和轫致辐射共同产生等离子体连续辐射;等离子体演化后期,连续辐射主要复合辐射产生的。Al原子对连续辐射的共振吸收是选择性的,这是改变连续辐射按波长“平滑”分布的主要机制。  相似文献   

4.
激光诱导Al等离子体中连续辐射波长分布   总被引:1,自引:0,他引:1  
用Ar作环境气体,压强固定在100 kPa,激光脉冲能量145 mJ/pulse,利 用时空分辨技术,采集激光烧蚀Al靶产生的等离子体辐射的时间分辨谱。分析了Al等离子体 连续辐射特征。根据连续辐射强度的时间分布,简要讨论了激光诱导等离子体连续辐射的产 生机理。根据连续辐射强度的波长分布,提出了原子对激光诱导等离子体连续辐射共振吸收 机理。认为:Al原子吸收能量的主要机制是原子实吸收连续辐射光子,原子实吸收光子的方 式是与价电子构成极性振子对连续辐射共振吸收。  相似文献   

5.
激光诱导Al等离子体中的Doppler效应   总被引:2,自引:1,他引:2  
用Nd:YAG脉冲激光烧蚀Al靶产生等离子体,利用时间分辨技术采集Al等离子体辐射的时间分辨信息,使用光学多道分析系统(OMA Ⅲ)记录Al等离子体辐射光谱,从而获得激光诱导Al等离子体时间分辨光谱。分别利用Lorentz函数、Gauss函数以及这两种函数的线性叠加函数(后简称叠加函数),对Al原子共振双线Al Ⅰ 396.15 nm,Al Ⅰ 394.40 nm进行拟合分析,解析出实验谱线所含的Lorentz和Gauss线形成分。通过对比这两种线形成分发现,实验谱线主要由Lorentz线形成分所组成,Gauss线形成分相对少得多。通过对比Lorentz函数与叠加函数对实验谱线的拟合曲线,给出了Doppler效应展宽谱线的直观图像,估算了Doppler效应导致谱线的增宽量。结果发现,Doppler效应引起的Al共振谱线增宽约2×10-3~8×10-3 nm,这与理论计算结果6.7×10-3 nm符合得很好。因此,通过拟合分析与理论计算,对激光诱导Al等离子体中的Doppler效应给以圆满解释。  相似文献   

6.
在低压环境下,由Nd:YAG脉冲激光器产生的1.06 μm激光烧蚀金属Al靶产生等离子体,观测了外加电场下其空间分辨发射光谱,并由此分析了谱线相对强度、谱线展宽随外加电压的演化特性.结果发现:原子谱线强度及其半高全宽随外加电压的增加均有明显增大,而离子谱线受外加电压的影响较小.从微观机制上分析推断:外加电场使非稳态等离子体中的电子作定向运动,加剧电子与原子之间的碰撞是上述结果的主要原因.此外,由发射光谱线的Stark展宽计算了等离子体电子密度,并由实验结果讨论电子密度随外加电压的演化特性和空间演化特性.  相似文献   

7.
在低压环境下,由Nd:YAG脉冲激光器产生的1.06μm激光烧蚀金属Al靶产生等离子体,观测了外加电场下其空间分辨发射光谱,并由此分析了谱线相对强度、谱线展宽随外加电压的演化特性。结果发现:原子谱线强度及其半高全宽随外加电压的增加均有明显增大,而离子谱线受外加电压的影响较小。从微观机制上分析推断:外加电场使非稳态等离子体中的电子作定向运动,加剧电子与原子之间的碰撞是上述结果的主要原因。此外,由发射光谱线的Stark展宽计算了等离子体电子密度,并由实验结果讨论电子密度随外加电压的演化特性和空间演化特性。  相似文献   

8.
激光波长和激光入射角是影响激光诱导等离子体空间分布和光谱强度空间分布特性的重要因素.基于流体动力学和SAHA方程,仿真了激光诱导等离子体的二维空间演化过程,研究了激发等离子体的辐射光谱空间分布特性及激光波长、入射角度等参数对等离子体特征谱线空间分布特性的影响.研究结果表明:波长为1064 nm的激光在不同延时条件下,最佳激光入射角度均为0°.当入射角度为0°时,所激发的等离子体辐射在不同的探测角度处均有较强的光谱信号,且在100,500,1000 ns延时条件下,最佳探测角分别为±41°、±11°和±12°.对于不同的波长,当延时分别为100 ns和500 ns且激光以0°入射时,长波长激光所激发的等离子体光谱在不同探测角处的强度均强于短波长激光.当延时为100 ns时,1064 nm波长激光所激发的光谱在最佳探测角位置的强度约为532 nm和266 nm波长激光所激发的光谱在各自最佳探测角位置强度的2倍.随着探测角绝对值的减小,等离子体辐射光谱强度先增大,到达最佳探测角后强度再减小.入射波长分别为532 nm和1064 nm的激光诱导击穿光谱实验结果验证了仿真结果.  相似文献   

9.
用Ar气作保护气体 ,气压保持在一个标准大气压 ,用Nd :YAG脉冲激光烧蚀Al靶获得等离子体。利用时空分辨技术 ,采集了激光脉冲能量在 5 2 ,92 ,115和 14 5mJ情况下等离子体辐射的时空分辨谱。详细描述了 115mJ时等离子体的辐射特征 ,简要分析了其他脉冲能量下Ar的特征辐射规律。根据这些脉冲能量下Ar 特征谱线的分布规律 ,简要论述了Ar气体电离与激光脉冲能量的关系。讨论了环境气体电离机制 ,并对结果进行了简单解释。结果发现 ,在本实验采用的能量范围内 ,较高的脉冲能量更容易使环境气体电离 ,产生较强的Ar 离子辐射 ,且Ar 辐射持续时间较长。  相似文献   

10.
采用时间与空间分辨光谱测量技术,研究了在Ar气为缓冲气体下,用脉冲Nd∶YAG激光烧蚀Al产生等离子体的发射光谱及其随气压的变化规律,对粒子的激发机理进行了讨论,认为特征谱线是由复合辐射为主要机理,并用此结论在一定程度上解释了实验结果。  相似文献   

11.
原子与激光场相互作用产生的自发辐射可以用经典电偶极辐射理论很好的描述.通过改变与Sr原子束相互作用激光的偏振方向,分析探测Sr原子束荧光强度的变化,测定了在远场区的电偶极辐射特性.Sr原子电偶极子在远场区辐射能量的空间方向分布满足sin2θ关系,利用这一规律可以有效地探测到最强的荧光光谱.  相似文献   

12.
Al等离子体特征辐射时间分辨谱线线形分析   总被引:2,自引:1,他引:1  
用Nd :YAG脉冲激光烧蚀Al靶获得Al等离子体 ,利用时 空分辨技术采集Al等离子体的辐射信息 ,记录了 10~ 10 0 0 0ns延迟范围内Al等离子体辐射的时间分辨谱 ,通过分析 ,获得了Al等离子体特征谱线AlⅠ 396 15和AlⅠ 394 4 0nm的时间分辨谱。分析了 80 0~ 10 0 0 0ns延迟范围内的谱线线形 ,并分别对两条特征谱线进行了Lorentz函数和Gauss函数拟合。结果发现 ,10 0 0ns延迟以后的谱线是非常规则的Lorentz线形 ;而 10 0 0ns以前的也是Lorentz线形 ,但不十分规则 ;在该延迟范围内 ,所有时间分辨特征谱线与Gauss拟合曲线相差很大 ,说明谱线不是Gauss线形的。参照Lorentz函数拟合结果 ,测量了这两条谱线的半高全宽 ,并与谱线的自然线宽理论值比较。结果发现 ,实验值远大于理论值  相似文献   

13.
14.
闪电等离子体光谱特征是在强连续辐射背景上叠加丰富的NⅡ,NⅠ,OⅠ,HⅠ线状谱,闪电回击通道温度可达万开以上,通道内氮分子和氧分子接近完全离解,分析连续谱时,不考虑各组分分子带状谱对连续谱的影响.使用摄谱范围在400~1000 nm的无狭缝光栅摄谱仪记录云对地闪电放电光谱,在光谱可见区低频段观测到大量一价氮离子谱线,未...  相似文献   

15.
纳秒激光诱导空气等离子体存在从紫外、可见、近红外乃至射频微波的宽谱段辐射,但目前的研究大多关注紫外到可见波段的光谱辐射。激光等离子体作为一种新型的红外辐射源具有很多优势,相比于红外干扰弹以及红外干扰手段而言,空气等离子体红外辐射源可以灵活布置,成本低廉,因此研究空气等离子体的红外辐射特性就很有必要。针对目前脉冲激光诱导空气等离子体的红外干扰研究需要,对激光波长为532 nm的纳秒脉冲激光诱导空气等离子体的红外辐射特性进行实验研究,探讨激光能量对空气等离子体红外辐射强度的影响规律,以及空气等离子体红外辐射的角度分布特性,分析了等离子体红外辐射的可能产生机制。实验结果表明,激光诱导空气等离子体在950~1 700 nm范围内的红外光谱为线状谱和连续谱的叠加。其中线状谱主要是氮和氧的中性原子谱线,并且氮原子红外辐射占主导。随着激光能量的增加,由于空气击穿产生的氧和氮原子数量增加,导致空气等离子体红外辐射的谱线强度逐渐增大。随着红外探测角度的变化,在探测角度为75°时,OⅠ 1 128.63 nm和NⅠ1 246.96和1 362.42 nm谱线强度达到最大,在探测角度为120°时,NⅠ 1 011.46和1 053.96 nm谱线强度达到最大,这是因为空气等离子体红外辐射强度随探测角度变化呈现空间非对称性,表明空气等离子体内不同粒子的空间分布呈现非对称性。  相似文献   

16.
1 INTROEXPERIMENTExperimentalsetupwasshowninFig .1,exhaustivedescriptionsonthesetupandtheprocessofacquiringdatahasalready giveninrelativedocument[1] ,nowwedoexcessivedescriptionnolonger .2 RESULTANDDISCUSSIONResult:earlierspectraoftheplasmaradiatingwereshow…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号