首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, un-doped zinc oxide (ZnO) films with various thicknesses (150, 250, 350, 450 and 550 nm) were successfully prepared onto PET substrates using cathodic vacuum arc technique at low-temperature (<40 °C). Their microstructure, optical and electrical properties were investigated and discussed. The films showed (0 0 2) peaks, an average transmittance over 80% in the visible region. Calculated values of the band gap are around 3.29-3.33 eV when the film thickness increased, indicating a slight blue shift of optical transmission spectra. The lowest resistivity about 5.26 × 10−3 Ω cm could be achieved for the un-doped ZnO film with thickness of 550 nm.  相似文献   

2.
J.L. Mo 《Applied Surface Science》2009,255(17):7627-7634
CrN coatings were prepared by filtered cathodic vacuum arc (FCVA) technique. The influence of the deposition parameters (nitrogen partial pressure PN2, substrate bias voltage Vs and preheating of the substrate) on the structural, mechanical and tribological properties of the FCVA CrN coatings was investigated. Further, the FCVA CrN coating was compared in dry reciprocating sliding with commercial multi-arc ion plating (MAIP) CrN coating as to friction and wear properties. Profilometer, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) were used to evaluate the wear scars and the wear mechanisms were discussed. The results showed that the structural, mechanical and tribological properties of the FCVA CrN coatings were significantly dependent on the deposition parameters. The FCVA CrN coating deposited with PN2 of 0.1 Pa, Vs of −100 V and without preheating exhibited the optimal mechanical and tribological properties. The FCVA CrN coating exhibited much better anti-abrasive and anti-spalling properties than the MAIP CrN coating, which was resulted from significant reduction of macroparticles and pitting defects by the FCVA technique. The MAIP CrN coating suffered severe concentrated wear by a combination wear mechanisms of delamination, abrasive and oxidative wear when high normal load was applied, while for the FCVA CrN coating the wear mechanisms were ultra-mild abrasive and oxidative wear.  相似文献   

3.
张国平  王兴权  吕国华  周澜  黄骏  陈维  杨思泽 《中国物理 B》2013,22(3):35204-035204
ZrN/TiZrN multilayer are deposited by cathodic vacuum arc method with different substrate bias (from 0 to -800 V), using Ti and Zr plasma flows in residual N2 atmosphere, combined with ion bombardment of sample surfaces. The effect of pulsed bias on structure and properties of films is investigated. Microstructure of the coating is analyzed by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Meanwhile, the nanohardness, Young's modulus, and scratch tests are performed. The experimental results show that the films exhibit a nanoscale multilayer structure consisting of TiZrN and ZrN phases. Solid solutions are formed for component TiZrN films. The dominant preferred orientation of TiZrN films is (111) and (220). At pulsed bias of -200 V, the nanohardness and the adhesion strength of ZrN/TiZrN multilayer reach a maximum of 38 GPa, and 78 N, respectively. The ZrN/TiZrN multilayer demonstrates an enhanced nanohardness compared with binary TiN and ZrN films deposited under equivalent conditions.  相似文献   

4.
ZnO thin film has been deposited on the glass substrate at a temperature of 200 °C using the filtered cathodic arc plasma (FCAP) technique with the oxygen flow rate of 1.0, 3.0, 5.0, 7.0, 9.0 and 10.0 sccm. The deposition processes are only held in pure oxygen atmosphere. The as-grown films exhibit a polycrystalline hexagonal wurtzite structure. With the oxygen flow rate increase, the crystallinity of the samples first increases and then decreases as measured by X-ray diffractometry (XRD). And the tensile stress exists in all the as-grown thin films. The small grain with a mean diameter of 13 nm is observed by the field emission scanning electron microscopy (FESEM). The electrical resistivity values of the thin films are very low ranging from 5.42 × 10−3 Ω cm to 4.0 × 10−2 Ω cm. According to the result from room temperature photoluminescence spectra measurement, the luminescent bands also depend on the oxygen supply.  相似文献   

5.
A new technique to etch a substrate as a pre-treatment prior to functional film deposition was developed using a filtered vacuum arc plasma. An Ar-dominated plasma beam was generated from filtered carbon arc plasma by introducing appropriate flow rate of Ar gas in a T-shape filtered arc deposition (T-FAD) system. The radiation spectra emitted from the filtered plasma beam in front of a substrate table were measured. The substrate was etched by the Ar-dominated plasma beam. The principal results are summarized as follows. At a high flow rate of Ar gas (50 ml/min), when the bias was applied to the substrate, the plasma was attracted toward the substrate table and the substrate was well etched without film formation on the substrate. Super hard alloy (WC), bearing steel (SUJ2), and Si wafer were etched by the Ar-dominated plasma beam. The etching rate was dependent on the kind of substrate. The roughness of the substrate increased, when the etching rate was high. A pulse bias etched the substrate without roughening the substrate surface excessively.  相似文献   

6.
ZrN/TiZrN multilayers are deposited by using the cathodic vacuum arc method with different substrate bias(from 0 to 800 V),using Ti and Zr plasma flows in residual N 2 atmosphere,combined with ion bombardment of sample surfaces.The effect of pulsed bias on the structure and properties of films is investigated.Microstructure of the coating is analyzed by X-ray diffraction(XRD),and scanning electron microscopy(SEM).In addition,nanohardness,Young’s modulus,and scratch tests are performed.The experimental results show that the films exhibit a nanoscale multilayer structure consisting of TiZrN and ZrN phases.Solid solutions are formed for component TiZrN films.The dominant preferred orientation of TiZrN films is(111) and(220).At a pulsed bias of 200 V,the nanohardness and the adhesion strength of the ZrN/TiZrN multilayer reach a maximum of 38 GPa,and 78 N,respectively.The ZrN/TiZrN multilayer demonstrates an enhanced nanohardness compared with binary TiN and ZrN films deposited under equivalent conditions.  相似文献   

7.
Jun Xie 《哲学杂志》2013,93(11):820-832
Abstract

Ultrathin hydrogenated amorphous carbon (a-C:H) films deposited by plasma-enhanced chemical vapor deposition (PECVD) and hydrogen-free amorphous carbon (a-C) films of similar thickness deposited by filtered cathodic vacuum arc (FCVA) were subjected to rapid thermal annealing (RTA). Cross-sectional transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) were used to study the structural stability of the films. While RTA increased the thickness of the intermixing layer and decreased the sp3 content of the a-C:H films, it did not affect the thickness or the sp3 content of the a-C films. The superior structural stability of the FCVA a-C films compared with PECVD a-C:H films, demonstrated by the TEM and EELS results of this study, illustrates the high potential of these films as protective overcoats in applications where rapid heating is critical to the device functionality and performance, such as heat-assisted magnetic recording.  相似文献   

8.
The formation of chromium carbide-based hard-coatings on steels using a 90°-bend filtered cathodic vacuum arc (FCVA) has extensive industrial applications; such coatings are free of macroparticles and exhibit excellent characteristics. In this investigation, a working pressure of C2H2/Ar was adopted to synthesize amorphous chromium carbide film (a-C:Cr) and crystalline chromium carbide film (cryst-Cr3C2) from a Cr target (99.95%) at 500 °C under a substrate voltage of −50 V. The corrosion behavior of a-C:Cr coated on steel (a-C:Cr/steel) and cryst-Cr3C2 coated on steel (cryst-Cr3C2/steel) were compared in terms of open-circuit potentials (OCP) and polarization resistance (Rp) in an aerated 3.5 wt% NaCl aqueous solution, as determined by electrochemical impedance spectroscopy (EIS). The XRD results indicated that the transformation of a-C:Cr to cryst-Cr3C2 is distinct as the working pressure declines from 1.2 × 10−2 to 2.9 × 10−3 Torr. The OCP of a-C:Cr/steel and cryst-Cr3C2/steel resemble each other and both assembly are nobler than uncoated steel. The Rp of the coatings exceeds that of the uncoated steel. The SEM observation and the EIS results demonstrate that the cryst-Cr3C2/steel more effectively isolates the defects than dose a-C:Cr/steel.  相似文献   

9.
Transparent conductive ZnO film was deposited on glass substrate by pulsed filtered cathodic vacuum arc deposition (PFCVAD). Optical parameters such as absorption coefficient α, the refractive index n, energy band gap Eg and dielectric constants have been determined using different methods. Kramers-Kronig and dispersion relations were employed to determine the complex refractive index and dielectric constants using reflection data in the ultraviolet-visible-near infrared regions. The spectra of the dielectric coefficient were used to calculate the energy band gap and the value was 3.24 eV. The experimental energy band gap was found to be 3.22 eV for 357 nm thick ZnO thin film. The envelope method was also used to calculate the refractive index and the data were consistent with K-K relation results. The structure of the film was analyzed with an x-ray diffractometer and the film was polycrystalline in nature with preferred (002) orientation.  相似文献   

10.
E.W. Niu 《Applied Surface Science》2008,254(13):3909-3914
Ti-Zr-N (multi-phase) films were prepared by cathodic vacuum arc technique with different substrate bias (0 to −500 V), using Ti and Zr plasma flows in residual N2 atmosphere. It was found that the microstructure and mechanical properties of the composite films are strongly dependent on the deposition parameters. All the films studied in this paper are composed of ZrN, TiN, and TiZrN ternary phases. The grains change from equiaxial to columnar and exhibit preferred orientation as a function of substrate bias. With the increase of substrate bias the atomic ratio of Ti to Zr elements keeps almost constant, while the N to (Ti + Zr) ratio increases to about 1.1. The composite films present an enhanced nanohardness compared with the binary TiN and ZrN films deposited under the same condition. The film deposited with bias of −300 V possesses the maximum scratch critical load (Lc).  相似文献   

11.
Zinc oxide (ZnO) thin films on Si (1 1 1) substrates were deposited by pulsed laser ablation of ZnO target at different oxygen pressures. A pulsed Nd:YAG laser with wavelength of 1064 nm was used as laser source. The deposited thin films have been characterized by X-ray diffraction (XRD), Atomic force microscopy (AFM), and Raman spectroscopy. XRD measurements indicate that the ZnO thin films deposited at the oxygen pressure of 1.3 Pa have the best crystalline quality. AFM results show that the surface roughness of ZnO film increases with the increase of oxygen pressure. The Raman results indicate that oxygen ambient plays an important role in removing defects due to excess zinc.  相似文献   

12.
采用过滤阴极真空电弧技术,通过施加0—2000 V衬底负偏压使沉积离子获得不同能级的入射能量,在单晶硅上制备了四面体非晶碳薄膜.拉曼光谱分析表明,薄膜的结构为非晶sp3骨架中镶嵌着平面关联长度小于1 nm的sp2团簇.原子力显微镜研究表明:在低能级、富sp3能量窗口和次高能级,薄膜中sp3的含量越多,其表面就越光滑,应用sp3浅注入生长机制能够圆满地解释薄膜表面形态与离子入射能量之间的关系;但在高 关键词: 四面体非晶碳 过滤阴极真空电弧 能级  相似文献   

13.
Jian-Ke Yao 《中国物理 B》2023,32(1):18101-018101
For the crystalline temperature of BaSnO$_{3}$ (BTO) was above 650 ℃, the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular beam epitaxy till now which limited there application in low temperature device process. In the article, the microstructure, optical and electrical of BTO and In$_{2}$O$_{3}$ mixed transparent conductive BaInSnO$_x$ (BITO) film deposited by filtered cathodic vacuum arc technique (FCVA) on glass substrate at room temperature were firstly reported. The BITO film with thickness of 300 nm had mainly In$_{2}$O$_{3}$ polycrystalline phase, and minor polycrystalline BTO phase with (001), (011), (111), (002), (222) crystal faces which were first deposited at room temperature on amorphous glass. The transmittance was 70%-80% in the visible light region with linear refractive index of 1.94 and extinction coefficient of 0.004 at 550-nm wavelength. The basic optical properties included the real and imaginary parts, high frequency dielectric constants, the absorption coefficient, the Urbach energy, the indirect and direct band gaps, the oscillator and dispersion energies, the static refractive index and dielectric constant, the average oscillator wavelength, oscillator length strength, the linear and the third-order nonlinear optical susceptibilities, and the nonlinear refractive index were all calculated. The film was the n-type conductor with sheet resistance of 704.7 $\Omega /\Box $, resistivity of 0.02 $\Omega \cdot$cm, mobility of 18.9 cm$^{2}$/V$\cdot$s, and carrier electron concentration of $1.6\times 10^{19}$ cm$^{-3}$ at room temperature. The results suggested that the BITO film deposited by FCVA had potential application in transparent conductive films-based low temperature device process.  相似文献   

14.
ZnO thin films with typical c-axis (0 0 2) orientation were successfully deposited on quartz glass substrates by pulse laser ablation of Zn target in oxygen atmosphere at a relatively low temperature range of 100-250 °C. The structural and optical properties of the films were studied. In photoluminescence (PL) spectra at room temperature, single ultraviolet emission (without deep-level emission) was obtained from ZnO film deposited at the temperature of 200 °C. This was attributed to its low intrinsic defects.  相似文献   

15.
p-Type ZnO thin films have been realized via doping Li as acceptor by using pulsed laser deposition. In our experiment, Li2CO3 was used as Li precursor, and the growth temperature was varied from 400 to 600 °C in pure O2 ambient. The Li-doped ZnO film prepared at 450 °C possessed the lowest resistivity of 34 Ω cm with a Hall mobility of 0.134 cm2 V−1 s−1 and hole concentration of 1.37 × 1018 cm−3. X-ray diffraction (XRD) measurements showed that the Li-doped ZnO films grown at different substrate temperatures were of completely (0 0 2)-preferred orientation.  相似文献   

16.
Tantalum nitride films were deposited on silicon wafer and steel substrates by cathodic vacuum arc in N2/Ar gas mixtures. The chemical composition, crystalline microstructure and morphology of the films were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. According to the results, film composition and microstructure depends strongly on the N2 partial pressure and the applied negative bias (Vs).  相似文献   

17.
Nanostructures formed by Au nanoparticles on ZnO thin film surface are of interest for applications which include medical implants, gas-sensors, and catalytic systems. A frequency tripled Nd:YAG laser (λ = 355 nm, τFWHM ∼ 10 ns) was used for the successive irradiation of the Zn and Au targets. The ZnO films were synthesized in 20 Pa oxygen pressure while the subsequent Au coverage was grown in vacuum. The obtained structures surface morphology, crystalline quality, and chemical composition depth profile were investigated by acoustic (dynamic) mode atomic force microscopy, X-ray diffraction, and wavelength dispersive X-ray spectroscopy. The surface is characterized by a granular morphology, with average grain diameters of a few tens of nanometers. The surface roughness decreases with the increase of the number of laser pulses applied for the irradiation of the Au target. The Au coverage reveals a predominant (1 1 1) texture, whereas the underlying ZnO films are c-axis oriented. A linear dependence was established between the thickness of the Au coverage and the number of laser pulses applied for the irradiation of the Au target.  相似文献   

18.
Phosphorus-doped ZnO films were grown by pulsed laser deposition using a ZnO:P2O5-doped target as the phosphorus source with the aim of producing p-type ZnO material. ZnO:P layers (with phosphorus concentrations of between 0.01 to 1 wt%) were grown on a pure ZnO buffer layer. The electrical properties of the films were characterised from temperature dependent Hall-effect measurements. The samples typically showed weak n-type conduction in the dark, with a resistivity of 70 Ω cm, a Hall mobility of μn0.5 cm2 V −1 s−1 and a carrier concentration of n3×1017 cm−3 at room temperature. After exposure to an incandescent light source, the samples underwent a change in conduction from n- to p-type, with an increase in mobility and decrease in concentration for temperatures below 300 K.  相似文献   

19.
Effect of temperature on pulsed laser deposition of ZnO films   总被引:1,自引:0,他引:1  
M. Liu 《Applied Surface Science》2006,252(12):4321-4326
ZnO thin films have been deposited on Si(1 1 1) substrates at different substrate temperature by pulsed laser deposition (PLD) of ZnO target in oxygen atmosphere. An Nd:YAG pulsed laser with a wavelength of 1064 nm was used as laser source. The influences of the deposition temperature on the thickness, crystallinity, surface morphology and optical properties of ZnO films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), selected area electron diffraction (SAED), photoluminescence (PL) spectrum and infrared spectrum. The results show that in our experimental conditions, the ZnO thin films deposited at 400 °C have the best surface morphology and crystalline quality. And the PL spectrum with the strongest ultraviolet (UV) peak and blue peak is observed in this condition.  相似文献   

20.
Titanium nitride (TiN), titanium carbide (TiC) thin films and TiC/TiN bilayers have been deposited on AISI 304 stainless steel substrates by plasma assisted physical vapor deposition technique—reactive pulsed vacuum arc method. The coatings were characterized in terms of crystalline structure, microstructure and chemical nature by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. Tribological behavior was investigated using ball on disc technique. The average coefficient of friction was measured, showing lower values for the TiN/TiC bilayer. Dynamic wear curves were performed for each coating, observing a better wear resistance for TiN/TiC bilayers, compared to TiN and TiC monolayers. On the other hand, the TiCN formation in the TiN/TiC bilayer was observed, being attributed to the interdiffusion between TiN and TiC at the interface. Moreover, the substrate temperature influence was analysing observing a good behavior at TS = 115 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号