首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the oxygen partial pressure on the properties of indium tin oxide films deposited by rf reactive magnetron sputtering has been studied. The oxygen partial pressure was varied from 3.2 × 10−4 to 1.0 × 10−3 mbar. It has been found that the 4 × 10−4 mbar of oxygen partial pressure is a critical point. When the oxygen partial pressure is lower than 4 × 10−4 mbar, the deposition rate of the films is high; the films have low transmittance and electrical resistivity; the X-ray diffraction shows that the films have a random orientation and the images of the scanning electron microscopy show that the films surface are smooth without structure. When the pressure is higher than 4 × 10−4 mbar, the deposition rate is low and does not change as the oxygen partial pressure is further increased; the transmittance and the electrical resistivity are both high; the films show the preferred orientation along the (440) direction; the films surface show a clear structure and as the pressure is increased further, the films become porous. Considering both the factor of transmittance and resistivity, the optimum oxygen partial pressure will be 3.6 × 10−4 mbar. The films prepared at this pressure have 80% transmittance and 9 × 10−4 Ω cm resistivity.  相似文献   

2.
Zinc Selenide (ZnSe) thin films were deposited onto well cleaned glass substrates using vacuum evaporation technique under a vacuum of 3×10−5 mbar. The prepared ZnSe samples were implanted with mass analyzed 75 keV B+ ions at different doses ranging from 1012 to 1016 ions cm−2. The composition, thickness, microstructures, surface roughness and optical band gap of the as-deposited and boron-implanted films were studied by Rutherford backscattering (RBS), grazing incidence X-ray diffraction, Atomic force microscopy, Raman scattering and transmittance measurements. The RBS analysis indicates that the composition of the as-deposited and boron-implanted films is nearly stoichiometric. The thickness of the as-deposited film is calculated as 230 nm. The structure of the as-deposited and boron-implanted thin films is cubic. It is found that the surface roughness increases on increasing the dose of boron ions. In the optical studies, the optical band gap value decreases with an increase of boron concentration. In the electrical studies, the prepared device gave a very good response in the blue wavelength region.  相似文献   

3.
Transparent conducting oxide thin film CdTe-doped indium oxide (In2O3) has been grown by pulsed-laser deposition from a target of CdTe powder embedded in metallic indium. The electro-optical and structural properties were investigated as a function of oxygen partial pressure (PO2) and substrate temperature (Ts). A film deposited at Ts=420 °C and PO2=4 Pa shows the minimum resistivity 7.5×10−4 Ω cm, its optical transmission is 83% and the carrier concentration was 8.9×1020 cm3. The optical band gap and the average roughness of that sample were 3.6 eV and 6.45 Å, respectively. X-ray diffraction studies indicated that the films were polycrystalline. This material is a good candidate for being used as transparent conductor in the CdTe–CdS solar cell.  相似文献   

4.
Well-crystallized Ba0.5Sr0.5TiO3 thin films with good surface morphology were prepared on MgO(1 0 0) substrates by pulsed laser deposition technique at a deposition temperature of 800 °C under the oxygen pressure of 2 × 10−3 Pa. X-ray diffraction and atomic force microscopy were used to characterize the films. The full width at half maximum of the (0 0 2) Ba0.5Sr0.5TiO3 rocking curve and the root-mean-square surface roughness within the 5 μm × 5 μm area were 0.542° and 0.555 nm, respectively. The nonlinear optical properties of the films were determined by a single beam Z-scan method at a wavelength of 532 nm with laser duration of 55 ps. The results show that Ba0.5Sr0.5TiO3 thin films exhibit a fast third-order nonlinear optical response with the nonlinear refractive index and nonlinear absorption coefficient being n2 = 5.04 × 10−6 cm2/kW and β = 3.59 × 10−6 (m/W), respectively.  相似文献   

5.
SrBi2Nb2O9 (SBN) thin films were prepared on fused quartz substrates at room temperature by pulsed laser deposition. The influence of deposition parameters such as target-to-substrate distance, oxygen pressure and annealing temperature on film crystallization behavior was investigated by X-ray diffraction. Results indicated that the films grown at the optimum processing conditions have polycrystalline structure with a single layered perovskite phase. The optical transmittance of the films prepared at various oxygen pressures was measured in the wavelength range 200–900 nm using UV–vis spectrophotometer. The results showed that there is a red shift in the optical absorption edge with a rise in the oxygen pressure. Refractive index as a function of wavelength and optical band gap of the films were determined from the optical transmittance spectra. The results indicated that the refractive index increases with increasing oxygen pressure at the same incident light wavelength, while the band gap reduces from 4.13 to 3.88 eV. It may be attributed to an increase in packing density and grain size, and decrease in oxygen defects.  相似文献   

6.
Annealing effects on zirconium nitride films   总被引:1,自引:0,他引:1  
ZrN films were deposited by dc reactive magnetron sputtering on silicon substrates under optimized nitrogen partial pressure of 6×10−5 mbar. Structural, electrical and optical properties were systematically investigated. Films deposited at room temperature exhibited Schottky structure without any silicide interfacial layer. These films have electrical resistivity of 4.23×10−3 Ω cm, which were crystalline in nature, with cubic (1 1 1) orientation. Refractive index and extinction coefficient were found to be 1.95 and 0.43, respectively at a wavelength of 350 nm.

Samples were annealed for 1 h in air at two temperatures, 350 and 550 °C. Scanning electron microscopy (SEM) and energy dispersive analysis of X-rays (EDAX) showed alloy penetration pits. Extent of penetration was greater in the films, which were annealed at higher temperature (550 °C). Variation in refractive index was observed in the range of 1.95–1.80 at 350 nm, for the annealed films, with increase in grain size from 7.25 to 11.10 nm. Poly-crystalline nature has been observed with (1 1 1) and (2 0 1) orientations. Resistivity is found to increase from 4.23×10−3 to 6.21×10−3 Ω cm.  相似文献   


7.
We report a method based on the power ratio of transmittance for monitoring the corrosion rate in stainless steel 304L immersed in an aqueous solution of lithium bromide at 50 wt%, at 70 °C. The optical transmittance measured in the solution contaminated with corrosion oxides at different times of exposure is related to the physical degradation of the stainless steel samples. Lasers at 532 and 632 nm were utilized for monitoring the accumulation of corrosion oxides dissolved in the lithium bromide solution of the metallic samples for 480 h. The change in the optical power of transmittance was 13 μW/480 h measured at 532 nm and 3.6 μW/480 h at 632 nm. The variation of the power ratio for 532 nm was from 0.01 to 0.24, and for 632 nm, from 0.01×10−3 to 15.61×10−3; this is proportional to an accumulated corrosion rate of [0.0142×10−3–0.552×10−3 g/cm2] for an exposure time of 432 h.  相似文献   

8.
采用射频反应磁控溅射法在玻璃衬底上成功制备出具有c轴高择优取向的ZnO薄膜,利用X射线衍射及紫外-可见吸收和透射光谱研究了氧分压变化对ZnO薄膜的微观结构及光吸收特性的影响。结果表明,当工作气压恒定时,用射频反应磁控溅射制备的ZnO薄膜的生长行为主要取决于成膜空间中氧的密度,合适的氧分压能够提高ZnO薄膜的结晶质量;薄膜在可见光区的平均透过率达到90%以上,且随着氧分压的增大,薄膜的光学带隙发生了一定程度的变化。采用量子限域模型对薄膜的光学带隙作了相应的理论计算,计算结果与对样品吸收谱所作的拟合结果符合较好,二者的变化趋势完全一致,表明ZnO纳米晶粒较小时,薄膜光学带隙的变化与量子限域效应有很大关系。  相似文献   

9.
The optical, structural, and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids were investigated at 397.5, 532, and 795 nm. The TEM and spectral measurements have shown temporal dynamics of size distribution of Ag nanoparticles in solutions. The thermal-induced self-defocusing dominated in the case of high pulse repetition rate as well as in the case of nanosecond pulses. In the case of low pulse repetition rate, the self-focusing (γ = 3 × 10−13 cm2 W−1) and saturated absorption (β = −1.5 × 10−9 cm W−1) of picosecond and femtosecond radiation were observed in these colloidal solutions. The nonlinear susceptibility of Ag nanoparticles ablated in water was measured to be 5 × 10−8 esu (at λ = 397.5 nm).  相似文献   

10.
In this work, ZnO thin films were prepared by sol-gel method on glass substrates followed by calcinations at 500 °C for an hour. The effect of glucose on the structure and optical properties of the films was studied. The structural characteristics of the samples were analyzed by X-ray diffractometer (XRD) and atomic force microscope (AFM). The optical properties were studied by a UV-visible spectrophotometer. The results show that some of the prepared ZnO thin films have a high preferential oriented c-axis orientation with compact hexagonal wurtzite structure due to a proper amount of glucose introducing. After introducing the glucose additive in ZnO colloids, the intensity of (002) peak, the transmittance, and the optical band gap of the ZnO thin films increases because of the enhanced ZnO crystallization. On the contrary, the absorbance, the film thickness, and the surface root-mean-square (RMS) roughness of the ZnO thin films decreases. The glucose additive could not only improve the surface RMS roughness and microstructure of ZnO thin films, but also enhance the transmittance and the energy band gap more easily.  相似文献   

11.
The optical properties of Tl4Ga3InSe8 layered single crystals have been studied by means of transmission and reflection measurements in the wavelength range of 500–1100 nm. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 1.94 and 2.20 eV, respectively. Transmission measurements carried out in the temperature range of 10–300 K revealed that the rate of change of the indirect band gap with temperature is γ=−4.1×10−4 eV/K. The absolute zero value of the band gap energy was obtained as Egi(0)=2.03 eV. The dispersion of the refractive index is discussed in terms of the Wemple–DiDomenico single-effective-oscillator model. The refractive index dispersion parameters: oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index were found to be 4.10 eV, 23.17 eV, 6.21×1013 m−2 and 2.58, respectively. From X-ray powder diffraction study, the parameters of monoclinic unit cell were determined.  相似文献   

12.
Thin films of copper oxide with thickness ranging from 0.05–0.45 μm were deposited on microscope glass slides by successively dipping them for 20 s each in a solution of 1 M NaOH and then in a solution of copper complex. Temperature of the NaOH solution was varied from 50–90°C, while that of the copper solution was maintained at room temperature. X-ray diffraction patterns showed that the films, as prepared, are of cuprite structure with composition Cu2O. Annealing the films in air at 350°C converts these films to CuO. This conversion is accompanied by a shift in the optical band gap from 2.1 eV (direct) to 1.75 eV (direct). The films show p-type conductivity, 5×10−4 Ω−1 cm−1 for a film of thickness 0.15 μm. Electrical conductivity of this film increases by a factor of 3 when illuminated with 1 kW m−2 tungsten halogen radiation. Annealing in a nitrogen atmosphere at temperatures up to 400°C does not change the composition of the films. However, the conductivity in the dark as well as the photoconductivity of the film increases by an order of magnitude. The electrical conductivity of the CuO thin films produced by air annealing at 400°C, is high, 7×10−3 Ω−1 cm−1. These films are also photoconductive.  相似文献   

13.
In this paper, the experimental results regarding some structural, electrical and optical properties of ZnO thin films prepared by thermal oxidation of metallic Zn thin films are presented.Zn thin films (d=200–400 nm) were deposited by thermal evaporation under vacuum, onto unheated glass substrates, using the quasi-closed volume technique. In order to obtain ZnO films, zinc-coated glass substrates were isochronally heated in air in the 300–660 K temperature range, for thermal oxidation.X-ray diffraction (XRD) studies revealed that the ZnO films obtained present a randomly oriented hexagonal nanocrystalline structure. Depending on the heating temperature of the Zn films, the optical transmittance of the ZnO films in the visible wavelength range varied from 85% to 95%. The optical band gap of the ZnO films was found to be about 3.2 eV. By in situ studying of the temperature dependence of the electrical conductivity during the oxidation process, the value of about 2×10−2 Ω−1 m−1 was found for the conductivity of completely oxidized ZnO films.  相似文献   

14.
TiO2 thin films were prepared by electron beam evaporation at different oxygen partial pressures. The influences of oxygen partial pressure on optical, mechanical and structural properties of TiO2 thin films were studied. The results showed that with the increase of oxygen partial pressure, the optical transmittance gradually increased, the transmittance edge gradually shifted to short wavelength, and the corresponding refractive index decreased. The residual stresses of all samples were tensile, and the value increased as oxygen partial pressure increasing, which corresponded to the evolutions of the packing densities. The structures of TiO2 thin films all were amorphous because deposition particles did not possess enough energy to crystallize.  相似文献   

15.
The temperature effect on the Cu2O oxide morphology was investigated by oxidizing Cu(1 0 0) thin films at the temperature ranging from 150 to 1000 °C and constant oxygen partial pressure of 5×10−4 Torr. The evolution of the oxide island size and shape was followed inside an in situ ultrahigh vacuum transmission electron microscope (UHV TEM). Of particular interest, we find that the oxide morphology can be triangular, hut, rod or pyramid shaped depending only on the oxidation temperature.  相似文献   

16.
The third-order nonlinear optical response of a triphenylmethane dye (Acid blue 7) was studied using the Z-scan technique with a continuous-wave He–Ne laser radiation at 633 nm. The magnitude and sign of the third-order nonlinear refractive index n2 of aqueous solution of Acid blue 7 dye were determined; the negative sign indicates a self-defocusing optical nonlinearity in the sample studied. The negative nonlinear refractive index n2 and nonlinear absorption coefficient β were estimated to be −1.88 × 10−7 cm2/W and −3.08 × 10−3 cm/W, respectively, corresponding to Re(χ(3)) = −8.35 × 10−6 esu, and Im(χ(3)) = −6.88 × 10−7 esu. The experimental results show that Acid blue 7 dye have potential applications in nonlinear optics.  相似文献   

17.
Polycrystalline (1−x)Ta2O5xTiO2 thin films were formed on Si by metalorganic decomposition (MOD) and annealed at various temperatures. As-deposited films were in the amorphous state and were completely transformed to crystalline after annealing above 600 °C. During crystallization, a thin interfacial SiO2 layer was formed at the (1−x)Ta2O5xTiO2/Si interface. Thin films with 0.92Ta2O5–0.08TiO2 composition exhibited superior insulating properties. The measured dielectric constant and dissipation factor at 1 MHz were 9 and 0.015, respectively, for films annealed at 900 °C. The interface trap density was 2.5×1011 cm−2 eV−1, and flatband voltage was −0.38 V. A charge storage density of 22.8 fC/μm2 was obtained at an applied electric field of 3 MV/cm. The leakage current density was lower than 4×10−9 A/cm2 up to an applied electric field of 6 MV/cm.  相似文献   

18.
Ba0.65Sr0.35TiO3 (BST) thin films were deposited by RF sputtering with a very thin Ba0.65Sr0.35RuO3 (BSR) seeding-layer on Pt/Ti/SiO2/Si substrate. The crystallization of BST thin films and the surface morphology of BSR seeding-layer were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. XRD patterns show that the BSR seeding-layer affected the orientation of BST thin film, which is highly a-axis textured. It was also found that the BSR seeding-layer had a marked influence on the dielectric properties of BST thin films. Comparing with BST thin films directly deposited on Pt electrode, the dielectric relaxation can be suppressed and dielectric constant increased due to a possible reduction of interface oxygen vacancies at BST/BSR interface. Moreover, JV measurement indicates that the leakage current density of BST thin films on BSR seeding-layer were greatly reduced compared with that of BST thin films directly on Pt electrodes. The pyroelectric coefficient of BST thin films with BSR seeding-layer is 7.57 × 10−7 C cm−2 K−1 at 6 V/μm at room temperature (RT). Our results reveal that high pyroelectric property of BST thin film could be achievable using BSR seeding-layer as a special buffer.  相似文献   

19.
Zinc oxide (ZnO) thin films were sol–gel spin coated on glass substrates, annealed at various temperatures 300 °C, 400 °C and 500 °C and characterized by spectroscopic ellipsometry method. The optical properties of the films such as transmittance, refractive index, extinction coefficient, dielectric constant and optical band gap energy were determined from ellipsometric data recorded over the spectral range of 300–800 nm. The effect of annealing temperature in air on optical properties of the sol–gel derived ZnO thin films was studied. The transmission values of the annealed films were about 65% within the visible range. The optical band gap of the ZnO thin films were measured between 3.25 eV and 3.45 eV. Also the dispersion parameters such as single oscillator energy and dispersive energy were determined from the transmittance graph using the Wemple and DiDomenico model.  相似文献   

20.
A series of ZnO thin films were deposited on ZnO buffer layers by DC reactive magnetron sputtering. The buffer layer thickness determination of microstructure and optical properties of ZnO films was investigated by X-ray diffraction (XRD), photoluminescence (PL), optical transmittance and absorption measurements. XRD results revealed that the stress of ZnO thin films varied with the buffer layer thickness. With the increase of buffer layer thickness, the band gap edge shifted toward longer wavelength. The near-band-edge (NBE) emission intensity of ZnO films deposited on ZnO buffer layer also varied with the increase of thickness due to the spatial confinement increasing the Coulomb interaction between electrons and holes. The PL measurement showed that the optimum thickness of the ZnO buffer layer was around 12 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号