首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 465 毫秒
1.
Attempts to coordinate neutral ligands to low oxidation state indium centers are often hindered by disproportionation pathways that produce elemental indium and higher oxidation state species. In contrast, we find that reactions of the salt, InOTf (OTf=trifluoromethanesulfonate), with α‐diimine ligands yielded intensely colored compounds with no evidence of decomposition. X‐ray structural analysis of InOTf ? MesDABMe (MesDABMe=N,N‐dimesityl‐2,3‐dimethyl‐diazabutadiene; 1 ) reveals a discrete molecular compound with a pyramidal coordination environment at the indium center, consistent with the presence of a stereochemically active lone pair of electrons on indium and a neutral diazabutadiene chelate ligand. The use of the less‐electron‐rich MesDABH ligand (MesDABH=N,N‐dimesityl‐diazabutadiene) engenders dramatically different reactivity and produces a metallopolymer (InOTf ? MesDABH) ( 2 ) linked via C? C and In? In bonds. The difference in reactivity is rationalized by cyclic voltammetry and DFT studies that suggest more facile electron transfer from InI to the MesDABH and bis(aryl)acenaphthenequinonediimine (BIAN) ligands. Solution EPR spectroscopy indicates the presence of non‐interacting ligand‐based radicals in solution, whereas solid‐state EPR studies reflect the presence of a thermally accessible spin triplet consistent with reversible C? C bond cleavage.  相似文献   

2.
Wet chemical synthesis of covalent III‐V colloidal quantum dots (CQDs) has been challenging because of uncontrolled surfaces and a poor understanding of surface–ligand interactions. We report a simple acid‐free approach to synthesize highly crystalline indium phosphide CQDs in the unique tetrahedral shape by using tris(dimethylamino) phosphine and indium trichloride as the phosphorus and indium precursors, dissolved in oleylamine. Our chemical analyses indicate that both the oleylamine and chloride ligands participate in the stabilization of tetrahedral‐shaped InP CQDs covered with cation‐rich (111) facets. Based on density functional theory calculations, we propose that fractional dangling electrons of the In‐rich (111) surface could be completely passivated by three halide and one primary amine ligands per the (2×2) surface unit, satisfying the 8‐electron rule. This halide–amine co‐passivation strategy will benefit the synthesis of stable III‐V CQDs with controlled surfaces.  相似文献   

3.
A methodology has been developed to chromatographically quantify indium in polymetallic (bio)hydrometallurgical processing solutions using the Dionex IonPac CS5A column and pyridine‐2,6‐dicarboxylic acid eluent. Cu(II) and In(III) could be separated by elevating the column temperature to 45°C. The comparatively low stability constant of the In‐eluent complex (log K2 = 3.8) required typical leaching samples to be diluted in the eluent rather than acid or water to overcome ligand competition between components of the sample solution and the eluent. The methodology was applied to leachates from (bio)hydrometallurgical processing of oxidic flue dust residues and sulfidic zinc ores, where both are promising candidates for the recovery of indium from low grade ores and metallurgical wastes. Indium, ferrous iron, ferric iron, copper, zinc, nickel, and manganese concentrations could be simultaneously quantified. The method was found suitable for samples containing at least 0.25 mg/L indium and an iron to indium ratio of up to 100:1.  相似文献   

4.
Ring‐opening polymerization of rac‐ and meso‐lactide initiated by indium bis(phenolate) isopropoxides {1,4‐dithiabutanediylbis(4,6‐di‐tert‐butylphenolate)}(isopropoxy)indium ( 1 ) and {1,4‐dithiabutanediylbis(4,6‐di(2‐phenyl‐2‐propyl)phenolate)}(isopropoxy)indium ( 2 ) is found to follow first‐order kinetics for monomer conversion. Activation parameters ΔH? and ΔS? suggest an ordered transition state. Initiators 1 and 2 polymerize meso‐lactide faster than rac‐lactide. In general, compound 2 with the more bulky cumyl ortho‐substituents in the phenolate moiety shows higher polymerization activity than 1 with tert‐butyl substituents. meso‐Lactide is polymerized to syndiotactic poly(meso‐lactides) in THF, while polymerization of rac‐lactide in THF gives atactic poly(rac‐lactides) with solvent‐dependent preferences for heterotactic (THF) or isotactic (CH2Cl2) sequences. Indium bis(phenolate) compound rac‐(1,2‐cyclohexanedithio‐2,2′‐bis{4,6‐di(2‐phenyl‐2‐propyl)phenolato}(isopropoxy)indium ( 3 ) polymerizes meso‐lactide to give syndiotactic poly(meso‐lactide) with narrow molecular weight distributions and rac‐lactide in THF to give heterotactically enriched poly(rac‐lactides). © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4983–4991  相似文献   

5.
We have recently uncovered a general indium(I)‐catalyzed method for allylations and propargylation of acetals and ketals with a water‐ and air‐stable allyl boronate. By using a more reactive allyl borane, we have successfully extended this methodology to the more challenging C C coupling with ethers. Herein, we report an improved methodology for the indium(I)‐catalyzed allylation of acetals and ethers, through combination of the allyl boronate with a commercially available “hard” Lewis acid, B‐methoxy‐9‐BBN (BBN=borabicyclo[3.3.1]nonane), as an effective co‐catalyst. Significantly, our work highlights for the first time the correlation between the Lewis acidity of “electrophilic” boron‐based compounds and their “nucleophilic” reactivity in Csp3–Csp3 couplings, catalyzed by a “soft” low‐oxidation main group metal. In addition, we also report several applications of these methodologies to the selective synthesis of various carbohydrate derivatives.  相似文献   

6.
The dendritic growth of Li metal leads to electrode degradation and safety concerns, impeding its application in building high energy density batteries. Forming a protective layer on the Li surface that is electron‐insulating, ion‐conducting, and maintains an intimate interface is critical. We herein demonstrate that Li plating is stabilized by a biphasic surface layer composed of a lithium‐indium alloy and a lithium halide, formed in situ by the reaction of an electrolyte additive with Li metal. This stabilization is attributed to the fast lithium migration though the alloy bulk and lithium halide surface, which is enabled by the electric field across the layer that is established owing to the electron‐insulating halide phase. A greatly stabilized Li‐electrolyte interface and dendrite‐free plating over 400 hours in Li|Li symmetric cells using an alkyl carbonate electrolyte is demonstrated. High energy efficiency operation of the Li4Ti5O12 (LTO)|Li cell over 1000 cycles is achieved.  相似文献   

7.
Two highly ordered isonicotinamide (INA)‐functionalized mesoporous MCM‐41 materials supporting indium and thallium (MCM‐41‐INA‐In and MCM‐41‐INA‐Tl) have been developed using a covalent grafting method. A surface functionalization method has been applied to prepare Cl‐modified mesoporous MCM‐41 material. Condensation of this Cl‐functionalized MCM‐41 with INA leads to the formation of MCM‐41‐INA. The reaction of MCM‐41‐INA with In(NO3)3 or Tl(NO3)3 leads to the formation of MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts. The resulting materials were characterized using various techniques. These MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts show excellent catalytic performance in the selective oxidation of sulfides and thiols to their corresponding sulfoxides and disulfides. Finally, it is found that the anchored indium and thallium do not leach out from the surface of the mesoporous catalysts during reaction and the catalysts can be reused for seven repeat reaction runs without considerable loss of catalytic performance.  相似文献   

8.
A mild, efficient, and environment friendly method has been developed for the synthesis of 14‐alkyl or aryl‐14H‐dibenzo[a, j]xanthenes by condensation of 2‐naphthol and aldehydes in the presence of a catalytic amount of indium(III) triflate (2 mol%) in water at 100°C. Different types of aromatic and aliphatic aldehydes are used in the reaction, and in all cases the products synthesized in moderate to excellent yields. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:232–234, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20539  相似文献   

9.
In the solid state, [{Cp(CO)3Mo}InCl2]∞ forms a one‐dimensional coordination polymer in which the indium atoms are coordinated by four chlorine atoms (In? Cl: 2.448(2)–3.004(2) Å) and a {Cp(CO)3Mo} group (In? Mo: 2.750(1) Å) in a distorted trigonal bipyramidal environment. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Transition‐metal‐activated alkynes or allenes can accept nucleophilic attack and undergo direct addition of the nucleophiles to the unsaturated bonds or trigger subsequent rearrangement reactions. This chemistry has witnessed increasing development in recent years. In this report, we have focused on the metal‐catalyzed reactions of a variety of substituted propargyl allenic alcohols and thiophenols using indium(III) and zinc(II) catalysts, which can activate both the alcohol and alkyne. In this reaction, thio groups play the role of a nucleophile and trigger subsequent rearrangements to give benzene derivatives. The products can be further transformed into various 1,3,5‐trisubstituted aromatic compounds by nickel‐catalyzed coupling reactions through the cleavage of the C? S bonds.  相似文献   

11.
We fabricated films of cubic indium oxide (In2O3) by chemical bath deposition (CBD) for solar water splitting. The fabricated films were characterized by X‐ray diffraction analysis, Raman scattering, X‐ray photoelectron spectroscopy, and scanning electron microscopy, and the three‐dimensional microstructure of the In2O3 cubes was elucidated. The CBD deposition time was varied, to study its effect on the growth of the In2O3 microcubes. The optimal deposition time was determined to be 24 h, and the corresponding film exhibited a photocurrent density of 0.55 mA cm?2. Finally, the film stability was tested by illuminating the films with light from an AM 1.5 filter with an intensity of 100 mW cm?2.  相似文献   

12.
Amide‐functionalized metal–organic frameworks (AFMOFs) as a subclass of MOF materials have received great interest recently because of their intriguing structures and diverse potential applications. In this work, solvothermal reactions between indium nitrate and two mixed‐linkers afforded two new isoreticular 8‐connected trinuclear indium‐based AFMOFs of [(In3O)(OH)(L2)2(IN)2]?(solv)x ( 2‐In ) and [(In3O)(OH)(L2)2(AIN)2]?(solv)x ( NH2‐2‐In ) (H2L2=4,4′‐(carbonylimino)dibenzoic acid and HIN=isonicotinic acid or HAIN=3‐aminoisonicotinic acid), respectively. Moreover, by means of reticular chemistry, an extended network of [(In3O)(OH)(L3)2(PB)2]?(solv)x (3‐In) (H2L3=4,4′‐(terephthaloylbis(azanediyl))dibenzoic acid, HPB=4‐(4‐pyridyl)benzoic acid) was also successfully realized after prolongation of the former dicarboxylate linker and HIN, resulting in a truly 8‐connected isoreticular AFMOF platform. These frameworks were structurally determined by single‐crystal X‐ray diffraction (SCXRD). Sorption studies further demonstrate that 2‐In and NH2‐2‐In exhibit not only high surface areas and pore volumes but also relatively high carbon capture capabilities (the CO2 uptakes reach 60.0 and 75.5 cm3 g?1 at 298 K and 760 torr, respectively) due to the presences of amide and/or amine functional groups. The selectivity of CO2/N2 and CO2/CH4 calculated by IAST are 10.18 and 12.43, 4.20 and 4.23 for 2‐In and NH2‐2‐In , respectively, which were additionally evaluated by mixed‐gases dynamic breakthrough experiments. In addition, high‐pressure gas sorption measurements show that both materials could take up moderate amounts of natural gas.  相似文献   

13.
A hexameric metal–organic nanocapsule is assembled from pyrogallol[4]arene units, which are stitched together with indium ions. This indium‐seamed capsule is the first instance of a M24L6 type hexameric coordination cage held together exclusively by trivalent metal ions. Explicitly, unlike previously reported pyrogallol[4]arene‐based metal‐seamed capsules, the current In3+ seamed capsule is entirely supported by O→In coordinate bonds. This work demonstrates the important proof of concept of the ability of pyrogallol[4]arene to react with metals in higher oxidation states to assemble into atomically‐precise hexameric coordination cages. As such, these results open up exciting avenues toward the assembly of previously unanticipated metal–organic capsules, for example offering inspiration for tackling metals exhibiting high valence states such as in the lanthanide and actinide series.  相似文献   

14.
Esterification reactions from cyclic 1,3‐diketones and alcohols are carried out in the presence of several Lewis acids. In particular, indium(III) triflate, In(OTf)3, iron(III) triflate, Fe(OTf)3, copper(II) triflate, Cu(OTf)2, and silver(I) triflate, AgOTf, show high catalytic activities. These reactions proceed through the carbon–carbon bond cleavage by a retro‐aldol reaction and were found to be highly regioselective even in the presence of other functional groups. This type of reaction can also be applied to the preparation of the keto esters during the synthesis of seratrodast, which is an antiasthmatic and eicosanoid antagonist.  相似文献   

15.
A convenient and efficient procedure for the synthesis of β‐alkyl/arylsulfanyl carbonyl compounds has been developed by a simple one‐pot reaction of dialkyl/diaryl sulfides with α,β‐unsaturated aldehydes, ketones, carboxylic esters, and nitriles in presence of indium and trimethylsilyl chloride under sonication.  相似文献   

16.
The synthesis and photochemical study of novel nonsymmetrical 1,2‐dithienylethenes (DTEs) with a maleimide bridge have been carried out. The synthetic approach to the DTEs was based on successive selective palladium‐catalyzed cross‐coupling reactions of 5‐susbtituted‐2‐methyl‐3‐thiophenyl indium reagents with 3,4‐dichloromaleimides. The required organoindium reagents were prepared from 2‐methyl‐3,5‐dibromothiophene by a selective (C‐5) coupling reaction with triorganoindium compounds (R3In) and subsequent metal–halogen exchange. The coupling reactions usually gave good yields and have a high atom economy with substoichiometric amounts of R3In. The results of photochemical studies show that these novel dithienylmaleimides undergo a photocyclization reaction upon irradiation in the UV region and a photocycloreversion after excitation in the visible region, thus they can be used as photochemical switches. ON–OFF operations can be repeated in successive cycles without appreciable loss of effectiveness in the process.  相似文献   

17.
Propene, one of key building blocks for manufacturing plastics and chemicals, could be directly and stably produced from ethanol in good yields. The conversion degree of ethanol to propene reached approximately 60 mol % by using a 3 atom % scandium‐loaded indium oxide catalyst at 823 K in the presence of water and hydrogen. The introduction of Sc prevented the reduction of In2O3 to In metal during the reaction, and that of water decreased the coke formation. Both additions resulted in longer lifetimes of the catalysts. The hydrogen addition increased the conversion of acetone to propene. The reaction pathways are also suggested on the basis of the product distributions and the pulse experiments, ethanol→acetaldehyde→acetone→propene, which is quite different from the shape‐selective catalysis on zeolites and the dimerization‐metathesis of ethene on nickel ion‐loaded silica catalysts.  相似文献   

18.
The morphology of micro‐ and nanodroplets and thin films of ionic liquids (ILs) prepared through physical vapor deposition is presented. The morphology of droplets deposited on indium‐tin‐oxide‐coated glass is presented for the extended 1‐alkyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide ([CnC1im][Ntf2]; n=1–8) series, and the results show the nanostructuration of ILs. The use of in‐vacuum energetic particles enhances/increases the nanodroplets mobility/coalescence mechanisms and can be a pathway to the fabrication of thin IL films.  相似文献   

19.
As a promising solar‐energy material, the electronic structure and optical properties of Beta phase indium sulfide (β‐In2S3) are still not thoroughly understood. This paper devotes to solve these issues using density functional theory calculations. β‐In2S3 is found to be an indirect band gap semiconductor. The roles of its atoms at different lattice positions are not exactly identical because of the unique crystal structure. Additonally, a significant phenomenon of optical anisotropy was observed near the absorption edge. Owing to the low coordination numbers of the In3 and S2 atoms, the corresponding In3‐5s states and S2‐3p states are crucial for the composition of the band‐edge electronic structure, leading to special optical properties and excellent optoelectronic performances.  相似文献   

20.
In this work an optical fiber sensor, where a lossy‐mode resonance (LMR) effect was obtained due to indium tin oxide (ITO) thin overlay, has been simultaneously applied as a working electrode in a 3‐electrode cyclic voltammetry electrochemical setup. Since LMR conditions highly depend on refractive index of a surrounding medium, an LMR‐based sensor was applied for optical investigations of electrolyte's properties at the ITO surface. We have found that the optical response of the sensor highly depends on the applied potential and its changes, as well as the properties of the investigated electrolyte, i. e., its composition and presence of a redox probe. Both optical and electrochemical response of the ITO‐LMR sensor to various concentrations of phosphate‐buffered saline (PBS), NaCl and Na2SO4, as well as scan rate were investigated and discussed. We have found that the responses in optical and electrical domains differ significantly and may deliver supplementary information about the investigated analyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号