首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rapid development of advanced energy‐storage devices requires significant improvements of the electrode performance and a detailed understanding of the fundamental energy‐storage processes. In this work, the self‐assembly of two‐dimensional manganese oxide nanosheets with various metal cations is introduced as a general and effective method for the incorporation of different guest cations and the formation of sandwich structures with tunable interlayer distances, leading to the formation of 3D MxMnO2 (M=Li, Na, K, Co, and Mg) cathodes. For sodium and lithium storage, these electrode materials exhibited different capacities and cycling stabilities. The efficiency of the storage process is influenced not only by the interlayer spacing but also by the interaction between the host cations and shutter ions, confirming the crucial role of the cations. These results provide promising ideas for the rational design of advanced electrodes for Li and Na storage.  相似文献   

2.
基于催化应用调控氧化铈纳米材料的形貌   总被引:1,自引:0,他引:1  
塔娜  刘景月  申文杰 《催化学报》2013,34(5):838-850
催化剂的设计、合成和结构调控是获得优异性能的关键.传统的策略主要是尽量减小催化剂颗粒尺寸以增加活性中心的数目,即尺寸效应.近年来,材料科学的快速发展使得在纳米尺度上调变催化剂的尺寸和形貌成为可能,特别是通过形貌调控可暴露更多的高活性晶面,大幅度提高催化性能,即纳米催化中的形貌效应.因此,调节催化剂的尺寸与形貌可以单独或协同优化材料的性能.氧化铈作为催化剂的重要组分与结构、电子促进剂被广泛应用于多相催化剂体系.本文总结了近期氧化铈材料形貌可控合成的进展,包括主要的合成策略和表征方法; 进而分析了氧化铈和金-氧化铈催化材料的形貌效应,指出金-氧化铈之间独特的相互作用与载体形貌密切相关; 阐述了氧化铈纳米材料因暴露晶面的差异而获得不同催化性能的化学机制.  相似文献   

3.
The design of molecular catalysts that mimic the behavior of enzymes is a topical field of activity in emerging technologies, and can lead to an improved understanding of biological systems. Herein, we report how the bulky arms of the cations in [(n C4H9)4N]+[HCO3] give rise to a host scaffold that emulates the substrate binding sites in carbonic anhydrase enzymes, affording a unique glimpse of an arrested intermediate in the base‐mediated binding and activation of CO2.  相似文献   

4.
Tuning CO2 hydrogenation selectivity to obtain targeted value-added chemicals and fuels has attracted increasing attention. However, a fundamental understanding of the way to control the selectivity is still lacking, posing a challenge in catalyst design and development. Herein, we report our new discovery in ambient pressure CO2 hydrogenation reaction where selectivity can be completely reversed by simply changing the crystal phases of TiO2 support (anatase- or rutile-TiO2) or changing metal loadings on anatase-TiO2. Operando spectroscopy and NAP-XPS studies reveal that the determining factor is a different electron transfer from metal to the support, most probably as a result of the different extents of hydrogen spillover, which changes the adsorption and activation of the intermediate of CO. Based on this new finding, we can not only regulate CO2 hydrogenation selectivity but also tune catalytic performance in other important reactions, thus opening up a door for efficient catalyst development by rational design.  相似文献   

5.
Bacteriophages (phages) are bacterial viruses evolutionarily tuned to very specifically recognize, infect, and propagate within only a unique pool of host cells. Knowledge of these phage host ranges permits one to devise diagnostic tests based on phage–host recognition profiles. For decades, fundamental phage typing assays have been used to identify bacterial pathogens on the basis of the ability of phages to kill, or lyse, the unique species, strain, or serovar to which they are naturally targeted. Over time, and with a better understanding of phage–host kinetics and the realization that there exists a phage specific for nearly any bacterial pathogen of clinical, foodborne, or waterborne consequence, a variety of improved, rapid, sensitive, and easy-to-use phage-mediated detection assays have been developed. These assays exploit every stage of the phage recognition and infection cycle to yield a wide variety of pathogen monitoring, detection, and enumeration formats that are steadily advancing toward new biosensor integrations and advanced sensing technologies.  相似文献   

6.
Abstract

An interesting nanostructured non-stoichiometric vanadium oxide bronze (CaxV2O5?yH2O) is incorporated as the active material in an aqueous zinc-ion intercalation device. Simple solvothermal synthesis route produces highly crystalline and strongly oriented nanobelt structures as characterized by microscopy. Upon cycling, the cathode materials are recovered for an X-ray absorption investigation of local electronic and geometric changes for both the host vanadium oxide and the intercalated zinc ion as a function of voltage. This multi-edge study presents changes in Zn–O coordination and suggests Zn-ion occupancy site through theoretical calculations. The layered vanadium host shows gradual oxidation state reduction from charge density donation during intercalation while the Zn ion maintains the +2 oxidation state. The findings add understanding to the mechanisms involved in aqueous electrochemical storage devices.  相似文献   

7.
The integrated intensity change by H-bonds are measured for CH3OH solved in different solvents of fundamental, 1. and 2. overtone OH stretching bands. A function A=f(ν) for the strong intensity change by H-bonds of the fundamental band is given, it shows a kink between pure van der Waals solvents and H-bond acceptors. - The contrary behavior of fundamental and 1. overtone bands for the T-dependence of pure CH3OH and its LiClO4-solutions could be canceled if the fundamental spectra are intensity corrected by A=f(ν). It is shown that the discussions between species and continuum models of water could become unique taking into account the function f(ν) and its kink, different for fundamental and overtone bands.  相似文献   

8.
Gate‐opening is a unique and interesting phenomenon commonly observed in flexible porous frameworks, where the pore characteristics and/or crystal structures change in response to external stimuli such as adding or removing guest molecules. For gate‐opening that is induced by gas adsorption, the pore‐opening pressure often varies for different adsorbate molecules and, thus, can be applied to selectively separate a gas mixture. The detailed understanding of this phenomenon is of fundamental importance to the design of industrially applicable gas‐selective sorbents, which remains under investigated due to the lack of direct structural evidence for such systems. We report a mechanistic study of gas‐induced gate‐opening process of a microporous metal–organic framework, [Mn(ina)2] (ina=isonicotinate) associated with commensurate adsorption, by a combination of several analytical techniques including single crystal X‐ray diffraction, in situ powder X‐ray diffraction coupled with differential scanning calorimetry (XRD‐DSC), and gas adsorption–desorption methods. Our study reveals that the pronounced and reversible gate opening/closing phenomena observed in [Mn(ina)2] are coupled with a structural transition that involves rotation of the organic linker molecules as a result of interaction of the framework with adsorbed gas molecules including carbon dioxide and propane. The onset pressure to open the gate correlates with the extent of such interaction.  相似文献   

9.
The purpose of this Viewpoint is to discuss the molecular design principles that guide development of synthetic antimicrobial polymers, especially those intended to mimic the structure of host defense peptides (HDPs). In particular, we focus on the principle of “amphiphilic balance” as it relates to some recently developed polyphosphoniums with somewhat atypical structure. We find that the fundamental concept of amphiphilic balance is still applicable to these new polymers, but that the method to achieve such balance is somewhat unique. We then briefly outline the future challenges and opportunities in this field.  相似文献   

10.
A unique ligand design allows the formation of both an M2L3 triple helicate and an M4L6 tetrahedron (M=Ti, Ga; L=ligand based on 2,6-diaminoanthracene). Although the tetrahedron is entropically disfavored, a strong host–guest interaction with Me4N+ is enough to drive the equilibrium towards the tetrahedron. Remarkably, the helicate can be quantitatively converted into the tetrahedron simply by addition of Me4N+ (shown schematically).  相似文献   

11.
Detailed understanding of protein–ligand interactions is crucial to the design of more effective drugs. This is particularly true when targets are protein interfaces which have flexible, shallow binding sites that exhibit substantial structural rearrangement upon ligand binding. In this study, we use molecular dynamics simulations and free energy calculations to explore the role of ligand-induced conformational changes in modulating the activity of three generations of Bcl-XL inhibitors. We show that the improvement in the binding affinity of each successive ligand design is directly related to a unique and measurable reduction in local flexibility of specific regions of the binding groove, accompanied by the corresponding changes in the secondary structure of the protein. Dynamic analysis of ligand–protein interactions reveals that the latter evolve with each new design consistent with the observed increase in protein stability, and correlate well with the measured binding affinities. Moreover, our free energy calculations predict binding affinities which are in qualitative agreement with experiment, and indicate that hydrogen bonding to Asn100 could play a prominent role in stabilizing the bound conformations of latter generation ligands, which has not been recognized previously. Overall our results suggest that molecular dynamics simulations provide important information on the dynamics of ligand–protein interactions that can be useful in guiding the design of small-molecule inhibitors of protein interfaces. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The unique intermolecular van der Waals force in emerging two-dimensional inorganic molecular crystals (2DIMCs) endows them with highly tunable structures and properties upon applying external stimuli. Using high pressure to modulate the intermolecular bonding, here we reveal the highly tunable charge transport behavior in 2DIMCs for the first time, from an insulator to a semiconductor. As pressure increases, 2D α-Sb2O3 molecular crystal undergoes three isostructural transitions, and the intermolecular bonding enhances gradually, which results in a considerably decreased band gap by 25 % and a greatly enhanced charge transport. Impressively, the in situ resistivity measurement of the α-Sb2O3 flake shows a sharp drop by 5 orders of magnitude in 0–3.2 GPa. This work sheds new light on the manipulation of charge transport in 2DIMCs and is of great significance for promoting the fundamental understanding and potential applications of 2DIMCs in advanced modern technologies.  相似文献   

13.
A fundamental understanding of the nature of nuclearity effects is important for the rational design of superior sub-nanocatalysts with low nuclearity, but remains a long-standing challenge. Using atomic layer deposition, we precisely synthesized Fe sub-nanocatalysts with tunable nuclearity (Fe1–Fe4) anchored on N,O-co-doped carbon nanorods (NOC). The electronic properties and spin configuration of the Fe sub-nanocatalysts were nuclearity dependent and dominated the H2O2 activation modes and adsorption strength of active O species on Fe sites toward C−H oxidation. The Fe1-NOC single atom catalyst exhibits state-of-the-art activity for benzene oxidation to phenol, which is ascribed to its unique coordination environment (Fe1N2O3) and medium spin state (t2g4eg1); turnover frequencies of 407 h−1 at 25 °C and 1869 h−1 at 60 °C were obtained, which is 3.4, 5.7, and 13.6 times higher than those of Fe dimer, trimer, and tetramer catalysts, respectively.  相似文献   

14.
Perfluoroalkyl (Rf) compounds have unique characters represented by a significantly high hydrophobic property, which often makes us consider that Rf groups should be interacted with each other via the ‘hydrophobic interaction’ as found for a normal hydrocarbon. Due to a similar intuitive and simplistic speculation, the Rf‐specific material properties have long been enveloped in darkness for comprehensive understanding, which should lucidly be discussed within a framework of physical chemistry. Here, we show studies on the stratified dipole arrays (SDA) theory, which readily explains the Rf‐specific material characters in a comprehensive manner based on only a few fundamental physical parameters of fluorine. The SDA theory encompasses some conventional theories that account for only a part of material properties. In addition, we show that the concept of vibrational spectroscopy of Rf compounds should also be revised, since the mass of fluorine is larger than that of carbon, which is opposite to the hydrocarbon case. In this manner, chemistry of Rf compounds needs another fully revised concept, which cannot be replaced by an extended concept of normal hydrocarbon compounds.  相似文献   

15.
The tunable chemistry linked to the organic/inorganic components in colloidal nanocrystals (NCs) and metal–organic frameworks (MOFs) offers a rich playground to advance the fundamental understanding of materials design for various applications. Herein, we combine these two classes of materials by synthesizing NC/MOF hybrids comprising Ag NCs that are in intimate contact with Al‐PMOF ([Al2(OH)2(TCPP)]) (tetrakis(4‐carboxyphenyl)porphyrin (TCPP)), to form Ag@Al‐PMOF. In our hybrids, the NCs are embedded in the MOF while still preserving electrical contact with a conductive substrate. This key feature allows the investigation of the Ag@Al‐PMOFs as electrocatalysts for the CO2 reduction reaction (CO2RR). We show that the pristine interface between the NCs and the MOFs accounts for electronic changes in the Ag, which suppress the hydrogen evolution reaction (HER) and promote the CO2RR. We also demonstrate a minor contribution of mass‐transfer effects imposed by the porous MOF layer under the chosen testing conditions. Furthermore, we find an increased morphological stability of the Ag NCs when combined with the Al‐PMOF. The synthesis method is general and applicable to other metal NCs, thus revealing a new way to think about rationally tailored electrocatalytic materials to steer selectivity and improve stability.  相似文献   

16.
One of the key issues for an upcoming hydrogen energy-based society is to develop highly efficient hydrogen-storage materials. Among the many hydrogen-storage materials reported, transition-metal hydrides can reversibly absorb and desorb hydrogen, and have thus attracted much interest from fundamental science to applications. In particular, the Pd−H system is a simple and classical metal-hydrogen system, providing a platform suitable for a thorough understanding of ways of controlling the hydrogen-storage properties of materials. By contrast, metal nanoparticles have been recently studied for hydrogen storage because of their unique properties and the degrees of freedom which cannot be observed in bulk, i. e., the size, shape, alloying, and surface coating. In this review, we overview the effects of such degrees of freedom on the hydrogen-storage properties of Pd-related nanomaterials, based on the fundamental science of bulk Pd−H. We shall show that sufficiently understanding the nature of the interaction between hydrogen and host materials enables us to control the hydrogen-storage properties though the electronic-structure control of materials.  相似文献   

17.
Notwithstanding that RuO2 is a promising catalyst for the oxygen evolution reaction (OER), a plethora of fundamental details on its catalytic properties are still elusive, severely limiting its large-scale deployment. It is also established experimentally that corrosion and wettability of metal oxides can, in fact, enhance the catalytic activity for OER owing to the formation of a hydrated surface layer. However, the mechanistic interplay between surface wettability, interfacial water dynamics and OER across RuO2, and what degree these processes are correlated are still debated. Herein, spin-polarized Density Functional Theory Molecular Dynamics (DFT-MD) simulations, coupled with advanced enhanced sampling methods in the well-tempered metadynamics framework, are applied to gain a global understanding of RuO2 aqueous interface (explicit water solvent) in catalyzing the OER, and hence possibly help in the design of novel catalysts in the context of photochemical water oxidation. The present study quantitatively assesses the free-energy barriers behind the OER at the (110)-RuO2 catalyst surface revealing plausible pathways composing the reaction network of the O2 evolution. In particular, OER is investigated at room temperature when such a surface is exposed to both gas-phase and liquid-phase water. Albeit a unique efficient pathway has been identified in the gas-phase OER, a surprisingly lowest-free-energy-requiring reaction route is possible when (110)-RuO2 is in contact with explicit liquid water. By estimating the free-energy surfaces associated to these processes, we reveal a noticeable water-assisted OER mechanism which involves a crucial proton-transfer-step assisted by the local water environment. These findings pave the way toward the systematic usage of DFT-MD coupled with metadynamics techniques for the fine assessment of the activity of catalysts, considering finite-temperature and explicit-solvent effects.  相似文献   

18.
Perovskite film with high crystal quality is fundamental to achieving high-performance solar cells. A fast nucleation process is crucial to improving the crystallization quality. Here, we propose a self-driven prenucleation strategy to achieve fast nucleation. This is realized through rational solvent design. The key characteristics of different solvents are systematically evaluated. Among them, formamide, with ultra-high dielectric constant, low Gutman donor number, and a high boiling point, is selected as the co-solvent. These unique characteristics render formamide a double-face solvent that is a good solvent for formamidinium iodide (FAI) and CsI while a poor solvent for PbI2. As a result, formamide induces the self-driven prenucleation of PbI2-DMSO seeding crystals and accelerates the nucleation, improving the crystalline quality of perovskite film. The efficiency of the hole transport layer-free carbon-based perovskite solar cells is boosted beyond 19 % for the first time.  相似文献   

19.
The electrochemical reductive valorization of CO2, referred to as the CO2RR, is an emerging approach for the conversion of CO2-containing feeds into valuable carbonaceous fuels and chemicals, with potential contributions to carbon capture and use (CCU) for reducing greenhouse gas emissions. Copper surfaces and graphene-embedded, N-coordinated single metal atom (MNC) catalysts exhibit distinctive reactivity, attracting attention as efficient electrocatalysts for CO2RR. This review offers a comparative analysis of CO2RR on copper surfaces and MNC catalysts, highlighting their unique characteristics in terms of CO2 activation, C1/C2(+) product formation, and the competing hydrogen evolution pathway. The assessment underscores the significance of understanding structure–activity relationships to optimize catalyst design for efficient and selective CO2RR. Examining detailed reaction mechanisms and structure-selectivity patterns, the analysis explores recent insights into changes in the chemical catalyst states, atomic motif rearrangements, and fractal agglomeration, providing essential kinetic information from advanced in/ex situ microscopy/spectroscopy techniques. At the end, this review addresses future challenges and solutions related to today's disconnect between our current molecular understanding of structure–activity-selectivity relations in CO2RR and the relevant factors controlling the performance of CO2 electrolyzers over longer times, with larger electrode sizes, and at higher current densities.  相似文献   

20.
Here, we have synthesized rod and flake shaped morphology of porphyrin aggregates from 5, 10, 15, 20-tetra (4-n-octyloxyphenyl) porphyrin (4-opTPP) molecule which are evident from scanning electron microscopy (SEM). The formation of J-type aggregation is evident from steady state and time-resolved fluorescence spectroscopic studies. Ultrafast transient absorption spectroscopic studies reveal that the excited state lifetime is controlled by the morphology and the time constant for S1→S0 relaxation changes from 3.05 ps to 744 ps with changing the shape from rod to flake, respectively. In spite of similar exciton coupling energy in both the aggregates, the flake shaped aggregates undergo a faster exciton relaxation process and the non-radiative relaxation channels are found to depend on the shape of aggregates. The fundamental understanding of morphology controlled ultrafast relaxation processes of aggregated porphyrin is important for designing efficient light harvesting devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号