首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Aggregation‐induced emission combined with aggregation‐promoted photo‐oxidation has been reported only in two works quite recently. In fact, this phenomenon is not commonly observed for AIE‐active molecules. In this work, a new tetraphenylethylene derivative (TPE‐4T) with aggregation‐induced emission (AIE) and aggregation‐promoted photo‐oxidation was synthesized and investigated. The pristine TPE‐4T film exhibits strong bluish‐green emission, which turns to quite weak yellow emission after UV irradiation. Interestingly, after solvent treatment, the weakly fluorescent intermediate will become bright‐yellow emitting. Moreover, the morphology of the TPE‐4T film could be regulated by UV irradiation. The wettability of the TPE‐4T microcrystalline surface is drastically changed from hydrophobic to hydrophilic. This work contributes a new member to the aggregation induced photo‐oxidation family and enriches the photo‐oxidation study of tetraphenylethylene derivatives.  相似文献   

2.
In this work, two rigid, multiple tetraphenylethene (TPE)‐substituted, π‐conjugated, snowflake‐shaped luminophores BT and BPT were facilely synthesized by using a 6‐fold Suzuki coupling reaction. These molecules are constructed based on the nonplanar structure of propeller‐shaped hexaphenylbenzene (HPB) or benzene as core groups and TPE as end groups. As a result, they reserve the intrinsic aggregation‐induced emission (AIE) property of the TPE moiety. Meanwhile, both fluorescence quantum yield and piezochromic behavior in the solid state can be tuned or switched by inserting the phenyl bridges through changing the twisting conformation. The more extended structure BPT showed a much stronger AIE effect and higher ΦF,f in the solid state in comparison with that of BT. Furthermore, an excellent optical waveguide application of these molecules was achieved. However, the revisable piezofluorochromic behavior has only appeared when BT was ground using a pestle and treated with solvent.  相似文献   

3.
Intracellular viscosity is a crucial parameter that indicates the functioning of cells. In this work, we demonstrate the utility of TPE‐Cy, a cell‐permeable dye with aggregation‐induced emission (AIE) property, in mapping the viscosity inside live cells. Owing to the AIE characteristics, both the fluorescence intensity and lifetime of this dye are increased along with an increase in viscosity. Fluorescence lifetime imaging of live cells stained with TPE‐Cy reveals that the lifetime in lipid droplets is much shorter than that from the general cytoplasmic region. The loose packing of the lipids in a lipid droplet results in low viscosity and thus shorter lifetime of TPE‐Cy in this region. It demonstrates that the AIE dye could provide good resolution in intracellular viscosity sensing. This is also the first work in which AIE molecules are applied in fluorescence lifetime imaging and intracellular viscosity sensing.  相似文献   

4.
Whereas most conventional DNA probes are flat disklike aromatic molecules, we explored the possibility of developing quadruplex sensors with nonplanar conformations, in particular, the propeller‐shaped tetraphenylethene (TPE) salts with aggregation‐induced emission (AIE) characteristics. 1,1,2,2‐Tetrakis[4‐(2‐triethylammonioethoxy)phenyl]ethene tetrabromide (TPE‐ 1 ) was found to show a specific affinity to a particular quadruplex structure formed by a human telomeric DNA strand in the presence of K+ ions, as indicated by the enhanced and bathochromically shifted emission of the AIE fluorogen. Steady‐state and time‐resolved spectral analyses revealed that the specific binding stems from a structural matching between the AIE fluorogen and the DNA strand in the folding process. Computational modeling suggests that the AIE molecule docks on the grooves of the quadruplex surface with the aid of electrostatic attraction. The binding preference of TPE‐ 1 enables it to serve as a bioprobe for direct monitoring of cation‐driven conformational transitions between the quadruplexes of various conformations, a job unachievable by the traditional G‐quadruplex biosensors. Methyl thiazolyl tetrazolium (MTT) assays reveal that TPE‐ 1 is cytocompatible, posing no toxicity to living cells.  相似文献   

5.
In most junctions built by wiring a single molecule between two electrodes, the electrons flow along only one axis: between the two anchoring groups. However, molecules can be anisotropic, and an orientation‐dependent conductance is expected. Here, we fabricated single‐molecule junctions by using the electrode potential to control the molecular orientation and access individual elements of the conductivity tensor. We measured the conductance in two directions, along the molecular plane as the benzene ring bridges two electrodes using anchoring groups (upright) and orthogonal to the molecular plane with the molecule lying flat on the substrate (planar). The perpendicular (planar) conductance is about 400 times higher than that along the molecular plane (upright). This offers a new method for designing a reversible room‐temperature single‐molecule electromechanical switch that controllably employs the electrode potential to orient the molecule in the junction in either “ON” or “OFF” conductance states.  相似文献   

6.
Tetraphenylethylene (TPE)‐substituted poly(allylamine hydrochloride) (PAH‐g‐TPE) is synthesized by a Schiff base reaction between PAH and TPE‐CHO. The PAH‐g‐TPE forms micelles in water at pH 6, which are further transformed into pure TPE‐CHO nanoparticles (NPs) with a diameter of ≈300 nm after incubation in a solution of low pH value. In contrast, only amorphous precipitates are obtained when TPE‐CHO methanol solution is incubated in water. The aggregation‐induced emission feature of the TPE molecule is completely retained in the TPE NPs, which can be internalized into cells and show blue fluorescence. Formation mechanism of the TPE NPs is proposed by taking into account the guidance effect of linear and charged PAH molecules, and the propeller‐stacking manner between the TPE‐CHO molecules.  相似文献   

7.
《化学:亚洲杂志》2017,12(17):2207-2210
Tetraphenylethylene (TPE)–carborane hybrids are constructed, and the impact of carborane substituents on the aggregation‐induced emission (AIE) characteristics of TPE‐cores has been investigated. When altering the 2‐R‐group on the carborane unit with ‐H, ‐CH3 or phenyl group, the luminescent quantum yield of the corresponding TPE derivatives can be manipulated from 0.18 to 0.63 in the solid state. The emission color exhibits an obvious 100 nm shift (from blue to yellow).  相似文献   

8.
Fluorescent imaging techniques have attracted much attention as a powerful tool to realize the visualization of structural and morphological evolution of various materials. However, the traditional fluorescent dyes usually suffered from aggregation‐caused quenching, which severely limits the visualization results. In contrast, aggregation‐induced emission (AIE) molecules with high quantum yields in the condensed state showed great opportunities for imaging techniques. In this feature article, recent progresses in visualization with AIE molecules are discussed. Assembly processes including crystallization, gelation process, and dissipative assembly have been observed. To better study information obtained regarding the processes, visualization during reactions, phase transitions, and molecular motions are successfully presented. Based on these successes, AIE molecules were further applied for phase recognition, macro‐dispersion evaluation, and damage detection. Finally, we also present the outlook and perspectives, in our opinion, for the development of visualization by AIE molecules.  相似文献   

9.
The last decade has witnessed rapid developments in aggregation‐induced emission (AIE). In contrast to traditional aggregation, which causes luminescence quenching (ACQ), AIE is a reverse phenomenon that allows robust luminescence to be retained in aggregated and solid states. This makes it possible to fabricate various highly efficient luminescent materials, which opens new paradigms in a number of fields, such as imaging, sensing, medical therapy, light harvesting, light‐emitting devices, and organic electronic devices. Of the various important features of AIE molecules, their self‐assembly behavior is very attractive because the formation of a well‐defined emissive nanostructure may lead to advanced applications in diverse fields. However, due to the nonplanar topology of AIEgens, it is not easy for them to self‐assemble into well‐defined structures. To date, some strategies have been proposed to achieve the self‐assembly of AIEgens. Herein, we summarize the most recent approaches for the self‐assembly of AIE molecules. These approaches can be sorted into two classes: 1) covalent molecular design and 2) noncovalent supramolecular interactions. We hope this will inspire more excellent work in the field of AIE.  相似文献   

10.
We demonstrate a concept‐proof work of using fluorescence (FL) “turn‐on” probes for the discriminatory detection of cysteine (Cys) over homocysteine (Hcy). The fluorogens are provided with aggregation‐induced emission (AIE) characteristic and functionalized with two aldehyde‐groups (DMTPS‐ALD and TPE‐ALD). All the detections were carried out in a biocompatible medium (10 mM HEPES buffer and DMSO, pH 7.4). In principle, the formation of thiazinane/thiazolidine through the chemical reaction of aldehydes on the probe molecules and the residue of Cys/Hcy determines the selective recognition of Cys and Hcy over other amino acids and glucose. The FL responses originate from the AIE property of thiazinane/thiazolidine resultants, which have low solubility and precipitate (aggregate) in the detection medium. The discrimination between Cys and Hcy comes from the difference in reaction kinetics of TPE‐ALD/DMTPS‐ALD with Cys and Hcy, thereby the FL responses show different time courses and intensity enhancement. It is worth noting that TPE‐ALD outshined the other two probes in performance with fast response, a high FL enhancement up to 16‐fold, high sensitivity, and good specificity and selectivity. Moreover, its FL response threshold at 250 μM is very close to the lower limit of the normal level of Cys in human plasma, which implies that TPE‐ALD could be applied as a potential indicator of Cys deficiency.  相似文献   

11.
We studied charge transport through core‐substituted naphthalenediimide (NDI) single‐molecule junctions using the electrochemical STM‐based break‐junction technique in combination with DFT calculations. Conductance switching among three well‐defined states was demonstrated by electrochemically controlling the redox state of the pendent diimide unit of the molecule in an ionic liquid. The electrical conductances of the dianion and neutral states differ by more than one order of magnitude. The potential‐dependence of the charge‐transport characteristics of the NDI molecules was confirmed by DFT calculations, which account for electrochemical double‐layer effects on the conductance of the NDI junctions. This study suggests that integration of a pendant redox unit with strong coupling to a molecular backbone enables the tuning of charge transport through single‐molecule devices by controlling their redox states.  相似文献   

12.
Molecular components are vital to introduce and manipulate quantum interference (QI) in charge transport through molecular electronic devices. Up to now, the functional molecular units that show QI are mostly found in conventional π‐ and σ‐bond‐based systems; it is thus intriguing to study QI in multicenter bonding systems without both π‐ and σ‐conjugations. Now the presence of QI in multicenter‐bond‐based systems is demonstrated for the first time, through the single‐molecule conductance investigation of carborane junctions. We find that all the three connectivities in carborane frameworks show different levels of destructive QI, which leads to highly suppressed single‐molecule conductance in para‐ and meta‐connected carboranes. The investigation of QI into carboranes provides a promising platform to fabricate molecular electronic devices based on multicenter bonds.  相似文献   

13.
Single‐molecule junctions are of particular interest in molecular electronics. To realize molecular electronic devices, it is crucial that functional single‐molecule junctions are connected to each other by using joint units on the atomic scale. However, good joint units have not been reported because controlling the charge transport directions through the junctions is not trivial. Here, we report a joint unit that controls and changes the charge transport directions through the junctions, by using a ruthenium–tris‐bipyridine (RuBpy) complex. The RuBpy single‐molecule junction was fabricated with scanning tunnelling microscopy‐based break junction techniques. The RuBpy single‐molecule junction showed two distinct high and low conductance states. The two states were characterized by the conductance measurement, the correlation analysis, and the comparative experiment of bipyridine (Bpy), which is the ligand unit of RuBpy. We demonstrate that the Ru complex has multiple charge transport paths, where the charge is carried vertically and horizontally through the complex depending on the path.  相似文献   

14.
A tetraphenylethene (TPE) derivative substituted with a sulfonyl‐based naphthalimide unit ( TPE‐Np ) was designed and synthesized. Its optical properties in solution and in the solid state were investigated. Photophysical properties indicated that the target molecule, TPE‐Np , possessed aggregation‐induced emission (AIE) behavior, although the linkage between TPE and the naphthalimide unit was nonconjugated. Additionally, it exhibited an unexpected, highly reversible mechanochromism in the solid state, which was attributed to the change in manner of aggregation between crystalline and amorphous states. On the other hand, a solution of TPE‐Np in a mixture of dimethyl sulfoxide/phosphate‐buffered saline was capable of efficiently distinguishing glutathione (GSH) from cysteine and homocysteine in the presence of cetyltrimethylammonium bromide. Furthermore, the strategy of using poly(ethylene glycol)–polyethylenimine (PEG‐PEI) nanogel as a carrier to cross‐link TPE‐Np to obtain a water‐soluble PEG‐PEI/ TPE‐Np nanoprobe greatly improved the biocompatibility, and this nanoprobe could be successfully applied in the visualization of GSH levels in living cells.  相似文献   

15.
Aggregation‐induced emission (AIE) has been harnessed in many systems through the principle of restriction of intramolecular rotations (RIR) based on mechanistic understanding from archetypal AIE molecules such as tetraphenylethene (TPE). However, as the family of AIE‐active molecules grows, the RIR model cannot fully explain some AIE phenomena. Here, we report a broadening of the AIE mechanism through analysis of 10,10′,11,11′‐tetrahydro‐5,5′‐bidibenzo[a,d][7]annulenylidene (THBDBA), and 5,5′‐bidibenzo[a,d][7]annulenylidene (BDBA). Analyses of the computational QM/MM model reveal that the novel mechanism behind the AIE of THBDBA and BDBA is the restriction of intramolecular vibration (RIV). A more generalized mechanistic understanding of AIE results by combining RIR and RIV into the principle of restriction of intramolecular motions (RIM).  相似文献   

16.
A novel white‐light‐emitting organic molecule, which consists of carbazolyl‐ and phenothiazinyl‐substituted benzophenone (OPC) and exhibits aggregation‐induced emission‐delayed fluorescence (AIE‐DF) and mechanofluorochromic properties was synthesized. The CIE color coordinates of OPC were directly measured with a non‐doped powder, which presented white‐emission coordinates (0.33, 0.33) at 244 K to 252 K and (0.35, 0.35) at 298 K. The asymmetric donor–acceptor–donor′ (D‐A‐D′) type of OPC exhibits an accurate inherited relationship from dicarbazolyl‐substituted benzophenone (O2C, D‐A‐D) and diphenothiazinyl‐substituted benzophenone (O2P, D′‐A‐D′). By purposefully selecting the two parent molecules, that is, O2C (blue) and O2P (yellow), the white‐light emission of OPC can be achieved in a single molecule. This finding provides a feasible molecular strategy to design new AIE‐DF white‐light‐emitting organic molecules.  相似文献   

17.
A novel molecular design strategy is provided to rationally tune the stimuli response of luminescent materials with aggregation‐induced emission (AIE) characteristics. A series of new AIE‐active molecules (AIE rotors) are prepared by covalently linking different numbers of tetraphenylethene moieties together. Upon gradually increasing the number of rotatable phenyl rings, the sensitivity of the response of the AIE rotors to viscosity and temperature is significantly enhanced. Although the molecular size is further enlarged, the performance is only slightly improved due to slightly increased effective rotors, but with largely increased rotational barriers. Such molecular engineering and experimental results offer more in‐depth insight into the AIE mechanism, namely, restriction of intramolecular rotations. Notably, through this rational design, the AIE rotor with the largest molecular size turns out to be the most viscosensitive luminogen with a viscosity factor of up to 0.98.  相似文献   

18.
Alkaline phosphatase (ALP) is associated with many diseases, and its accurate detection is of great significance. Fluorescent compounds with aggregation‐induced emission (AIE) feature show beneficial advantages for serving as fluorescent probes. Herein, an AIE‐active “turn on” probe for ALP detection was synthesized through incorporating a strong electron‐withdrawing group (cyano) in the middle and the recognition moiety phosphate group at the end, thereby rendering a D–A–D structure with a relatively high conjugation degree and good water solubility. It was found that the probe TPE‐CN‐pho is highly sensitive to ALP in aqueous solution. In the presence of ALP, the hydrophilic phosphate group on the probe is rapidly removed, resulting in a decrease in water solubility and subsequent formation of aggregates, thereby achieving aggregation‐induced emission. Moreover, the probe TPE‐CN‐pho has also been successfully applied to imaging ALP in living cells.  相似文献   

19.
A novel fluorescent sensor based on tetraphenylethene (TPE) modified with 2,6‐pyridinedicarboxylic acid (PDA) that shows aggregation‐induced emission (AIE) characteristics for thorium recognition with remarkable fluoresence enhancement response has been synthesized. This sensor is capable of visually distinguishing Th4+ among lanthanides, transition metals, and alkali metals under UV light. Th4+ can be detected by the naked eye at ppb levels owing to the AIE phenomenon. The sensor showed high selectivity for Th4+ compared to all other metals tested, and this recognition displayed good anti‐interference qualities. This study represents the first application of a AIE fluorescence sensor in actinide metal recognition and it has potential applications in environmental systems for thorium ion detection.  相似文献   

20.
A tetraphenylethene (TPE) derivative substituted with the electron‐acceptor 1,3‐indandione (IND) group was designed and prepared. The targeted IND‐TPE reserves the intrinsic aggregation‐induced emission (AIE) property of the TPE moiety. Meanwhile, owing to the decorated IND moiety, IND‐TPE demonstrates intramolecular charge‐transfer process and pronounced solvatochromic behavior. When the solvent is changed from apolar toluene to highly polar acetonitrile, the emission peak redshifts from 543 to 597 nm. IND‐TPE solid samples show an evident mechanochromic process. Grinding of the as‐prepared powder sample induces a redshift of emission from green (peak at 515 nm) to orange (peak at 570 nm). The mechanochromic process is reversible in multiple grinding–thermal annealing and grinding–solvent‐fuming cycles, and the emission of the solid sample switches between orange (ground) and yellow (thermal/solvent‐fuming‐treated) colors. The mechanochromism is ascribed to the phase transition between amorphous and crystalline states. IND‐TPE undergoes a hydrolysis reaction in basic aqueous solution, thus the red‐orange emission can be quenched by OH? or other species that can induce the generation of sufficient OH?. Accordingly, IND‐TPE has been used to discriminatively detect arginine and lysine from other amino acids, due to their basic nature. The experimental data are satisfactory. Moreover, the hydrolyzation product of IND‐TPE is weakly emissive in the resultant mixture but becomes highly blue‐emissive after the illumination for a period by UV light. Thus IND‐TPE can be used as a dual‐responsive fluorescent probe, which may extend the application of TPE‐based molecular probes in chemical and biological categories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号