首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Transition metal complexes of type M(L)2(H2O)x were synthesized, where L is deprotonated Schiff base 2,4‐dihalo‐6‐(substituted thiazol‐2‐ylimino)methylphenol derived from the condensation of aminothiazole or its derivatives with 2‐hydroxy‐3‐halobenzaldehyde and M = Co2+, Ni2+, Cu2+ and Zn2+ (x = 0 for Cu2+ and Zn2+; x = 2 for Co2+ and Ni2+). The synthesized Schiff bases and their metal complexes were thoroughly characterized using infrared, 1H NMR, electronic and electron paramagnetic resonance spectroscopies, elemental analysis, molar conductance and magnetic susceptibility measurements, thermogravimetric analysis and scanning electron microscopy. The results reveal that the bidentate ligands form complexes having octahedral geometry around Co2+ and Ni2+ metal ions while the geometry around Cu2+ and Zn2+ metal ions is four‐coordinated. The geometries of newly synthesized Schiff bases and their metal complexes were fully optimized in Gaussian 09 using 6–31 + g(d,p) basis set. Fluorescence quenching data reveal that Zn(II) and Cu(II) complexes bind more strongly to bovine serum albumin in comparison to Co(II) and Ni(II) complexes. The ligands and their complexes were evaluated for in vitro antibacterial activity against Escherichia coli ATCC 25922 (Gram negative) and Staphylococcus aureus ATCC 29213 (Gram positive) and cytotoxicity against lever hepatocellular cell line HepG2.  相似文献   

2.
Disulfide/thiolate interconversion supported by transition‐metal ions is proposed to be implicated in fundamental biological processes, such as the transport of metal ions or the regulation of the production of reactive oxygen species. We report herein a mononuclear dithiolate CoIII complex, [CoIIILS(Cl)] ( 1 ; LS=sulfur containing ligand), that undergoes a clean, fast, quantitative and reversible CoII disulfide/CoIII thiolate interconversion mediated by a chloride anion. The removal of Cl? from the CoIII complex leads to the formation of a bis(μ‐thiolato) μ‐disulfido dicobalt(II) complex, [Co2II,IILSSL]2+ ( 2 2+). The structures of both complexes have been resolved by single‐crystal X‐ray diffraction; their magnetic, spectroscopic, and redox properties investigated together with DFT calculations. This system is a unique example of metal‐based switchable Mn2‐RSSR/2 M(n+1)‐SR (M=metal ion, n=oxidation state) system that does not contain copper, acts under aerobic conditions, and involves systems with different nuclearities.  相似文献   

3.
Studies of double‐stranded‐DNA binding have been performed with three isomeric bis(2‐(n‐pyridyl)‐1H‐benzimidazole)s (n=2, 3, 4). Like the well‐known Hoechst 33258, which is a bisbenzimidazole compound, these three isomers bind to the minor groove of duplex DNA. DNA binding by the three isomers was investigated in the presence of the divalent metal ions Mg2+, Co2+, Ni2+, Cu2+, and Zn2+. Ligand–DNA interactions were probed with fluorescence and circular dichroism spectroscopy. These studies revealed that the binding of the 2‐pyridyl derivative to DNA is dramatically reduced in the presence of Co2+, Ni2+, and Cu2+ ions and is abolished completely at a ligand/metal‐cation ratio of 1:1. Control experiments done with the isomeric 3‐ and 4‐pyridyl derivatives showed that their binding to DNA is unaffected by the aforementioned transition‐metal ions. The ability of 2‐(2‐pyridyl)benzimidazole to chelate metal ions and the conformational changes of the ligand associated with ion chelation probably led to such unusual binding results for the ortho isomer. The addition of ethylenediaminetetraacetic acid (EDTA) reversed the effects completely.  相似文献   

4.
A new blue emitting 2‐allyl‐6‐(2‐dimethylaminoethyloxy)‐benzo[de]isoquinoline‐1,3‐dione, bearing an allylic group has been designed and synthesized. Bulk radical copolymerization has been carried out in order to prepare a fluorescent copolymer, based on styrene. The main photophysical characteristics of the monomeric and polymeric fluorophores have been investigated both in the absence and presence of metal cations and protons. It has been found that the monomeric naphthalimide can be used as a sensor for protons and Zn2+, Ni2+, Ce3+, Cu2+, Co2+, Ag+ cations. The polymeric fluorophore has been shown to be a selective chemosensor for Cu2+ cations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
The extent of binding of chrome violet, which is a monoazo dye and involves two hydroxyl groups in o and o′ positions to azo group, by polyvinylpyrrolidone is markedly enhanced in the presence of Co2+ ion. The amount of binding in the presence of 1 × 10?4 mol/L of Co2+ ion increases by a factor of about 10 compared to that in the absence of the metal ion. Ni2+ and Zn2+ ions do not perceptively influence the binding affinity of the dye. Cu2+ ion, in contrast, suppresses the binding. To investigate further the action of added metal ions, a cobalt–complex dye was prepared and its binding property for the polymer was compared to that of chrome violet in the presence of metal ions. Some possible mechanisms for the enhancement of chrome violet binding by the addition of Co2+ ion are described.  相似文献   

6.
The binding interaction of captopril (CPL) with biologically active metal ions Mg2+, Ca2+, Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ was investigated in an aqueous acidic medium by fluorescence spectroscopy. The experimental results showed that the metal ions quenched the intrinsic fluorescence of CPL by forming CPL‐metal complexes. It was found that static quenching was the main reason for the fluorescence quenching. The quenching constant in the case of Cu2+ was highest among all quenchers, perhaps due to its high nuclear charge and small size. Quenching of CPL by metal ions follows the order Cu2+>Ni2+>Co2+>Ca2+>Zn2+>Mn2+>Mg2+. The quenching constant Ksv, bimolecular quenching constant Kq, binding constant K and the binding sites "n" were determined together with their thermodynamic parameters at 27 and 37°C. The positive entropy change indicated the gain in configurational entropy as a result of chelation. The process of interaction was spontaneous and mainly ΔS‐driven.  相似文献   

7.
The colorimetric chemosensor 2‐((3,5‐dichloro‐2‐hydroxybenzylidene)amino)‐3′,6′‐dihydroxy‐6‐methyl‐4‐(p‐tolyl)spiro[benzo[f]isoindole‐1,9′‐xanthen]‐3(2H)‐one ( BFFSH ) derived from benzo[f]fluorescein dye was synthesized. NMR and IR spectroscopy as well as mass spectrometry were used to confirm the compound. BFFSH shows potential application for detecting metal ions in aqueous solution. It displays a colorimetric selectivity and sensitivity towards the aqueous solution of Cu2+ ions with a detection limit in the nano‐molar range (1.69 nM). In addition, the application of BFFSH was extended for the detection of Cu2+ ions in real water samples (tap and synthetic water) with a high recovery percentage. Additionally, the association constant (Ka) of BFFSH , which binds with Cu2+ ions based on 2:1 stoichiometry was calculated.  相似文献   

8.
New water‐soluble hyperbranched polyfluorenes bearing carboxylate side chains have been synthesized by the simple “A2 + B2 + C3” protocol based on Suzuki coupling polymerization. The linear polyfluorene analogue LPFA was also synthesized for comparative investigation. The optical properties of the neutral precursory polymers in CHCl3 and final carboxylic‐anionic conjugated polyelectrolytes in buffer solution were investigated. The obtained hyperbranched polyelectrolyte HPFA2 with lower content of branch unit (2%) showed excellent solubility and high fluorescence quantum yield (?F = 89%) in aqueous solution. Fluorescence quenching of HPFA2 by different metal ions was also investigated, the polyelectrolyte showed high selectivity for Hg2+ and Cu2+ ions relative to other various metal ions in buffer solution. The Stern‐Volmer constant Ksv was determined to be 0.80 × 106 M?1 for Hg2+ and 3.11 × 106 M?1 for Cu2+, respectively, indicating the potential application of HPFA2 as a highly selective and sensitive chemosensor for Hg2+ and Cu2+ ions in aqueous solution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3431–3439, 2010  相似文献   

9.
A new graphene oxide‐based hybrid material (HL) and its Co(II), Cu(II) and Ni(II) metal complexes were prepared. Firstly, graphene oxide and (3‐aminopropyl)trimethoxysilane were reacted to give graphene oxide–3‐(aminopropyl)trimethoxysilane (GO‐APTMS) hybrid material. After that, hybrid material HL was synthesized from the reaction of GO‐APTMS and 2,6‐diformyl‐4‐methylphenol. Finally, Co(II), Cu(II) and Ni(II) complexes of HL were obtained. All the materials were characterized using various techniques. The chemosensor properties of HL were investigated against Na+, K+, Cd2+, Co2+, Cu2+, Hg2+, Ni2+, Zn2+, Al3+, Cr3+, Fe3+ and Mn3+ ions and it was found that HL has selective chemosensing to Fe3+ ion. All the graphene oxide‐supported complexes were used as heterogeneous catalysts in the oxidation of 2‐methylnaphthalene (2MN) to 2‐methyl‐1,4‐naphthoquinone (vitamin K3, menadione) in the presence of hydrogen peroxide, acetic acid and sulfuric acid. The Cu(II) complex showed good catalytic properties compared to the literature. The selectivity of 2MN to vitamin K3 was 60.23% with 99.75% conversion using the Cu(II) complex.  相似文献   

10.
A new ratiometric fluorescent sensor ( 1 ) for Cu2+ based on 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) with di(2‐picolyl)amine (DPA) as ion recognition subunit has been synthesized and investigated in this work. The binding abilities of 1 towards different metal ions such as alkali and alkaline earth metal ions (Na+, K+, Mg2+, Ca2+) and other metal ions ( Ba2+, Zn2+, Cd2+, Fe2+, Fe3+, Pb2+, Ni2+, Co2+, Hg2+, Ag+) have been examined by UV‐vis and fluorescence spectroscopies. 1 displays high selectivity for Cu2+ among all test metal ions and a ~10‐fold fluorescence enhancement in I582/I558 upon excitation at visible excitation wavelength. The binding mode of 1 and Cu2+ is a 1:1 stoichiometry determined via studies of Job plot, the nonlinear fitting of the fluorometric titration and ESI mass.  相似文献   

11.
The interactions of polymethacrylopiperidide with Cu2+, Ni2+, Co2+ and Fe3+ ions have been investigated by potentiometric and conductometric titration, ESR and u.v. spectroscopy, viscometry and sedimentation. The average number of ligands coordinating with the central metal ions and the stability constants of polymeric metal complexes were determined. It is assumed that the polymethacrylopiperidide interacts with transition metal ions through the nitrogen atoms. The influence of spatial arrangement of donor atoms on the coordination ability of polyligand is discussed.  相似文献   

12.
Metal complex formation was investigated for di‐exo‐, di‐endo‐ and trans‐2,3‐ and 2,5‐disubstituted trinorbornanediols, and di‐exo‐ and di‐endo‐ 2,3‐disubstituted camphanediols using different divalent transition metals (Co2+, Ni2+, Cu2+) and electrospray ionization quadrupole ion trap mass spectrometry. Many metal‐coordinated complex ions were formed for cobalt and nickel: [2M+Met]2+, [3M+Met]2+, [M–H+Met]+, [2M–H+Met]+, [M+MetX]+, [2M+MetX]+ and [3M–H+Co]+, where M is the diol, Met is the metal used and X is the counter ion (acetate, chloride, nitrate). Copper showed the weakest formation of metal complexes with di‐exo‐2,3‐disubstituted trinorbornanediol yielding only the minor singly charged ions [M–H+Cu]+, [2M–H+Cu]+ and [2M+CuX]+. No clear differences were noted for cobalt complex formation, especially for cis‐2,3‐disubstituted isomers. However, 2,5‐disubstituted trinorbornanediols showed moderate diastereomeric differentiation because of the unidentate nature of the sterically more hindered exo‐isomer. trans‐Isomers gave rise to abundant [3M–H+Co]+ ion products, which may be considered a characteristic ion for bicyclo[221]heptane trans‐2,3‐ and trans‐2,5‐diols. To differentiate cis‐2,3‐isomers, the collision‐induced dissociation (CID) products for [3M+Co]2+, [M+CoOAc]+, [2M–H+Co]+ and [2M+CoOAc]+ cobalt complexes were investigated. The results of the CID of the monomeric and dimeric metal adduct complexes [M+CoOAc]+ and [2M–H+Co]+ were stereochemically controlled and could be used for stereochemical differentiation of the compounds investigated. In addition, the structures and relative energies of some complex ions were studied using hybrid density functional theory calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
An easy‐to‐prepare chemosensor, (E)‐1‐(phthalazine‐4‐yl)‐2‐(1‐(pyridine‐2‐yl)ethylidene) hydrazine ( 3 ), structurally characterized by single X‐ray crystallography, is developed for the selective and sensitive detection of Co2+ in aqueous media. Chemosensor 3 shows both absorption and fluorescence responses to Co2+ by forming a 1:1 complex (among the surveyed metal ions) with a detection limit down to 50 nM . It can also be used as a ′naked‐eye′ sensor due to the outstanding visible and emission color changes from yellow to red and blue to orange, respectively.  相似文献   

14.
Bicyclams inhibit HIV replication by binding to the CXCR4 chemokine receptor, which is the main coreceptor for gp120 used by X4, T‐tropic strains of HIV for membrane fusion and cell entry. Bicyclam AMD3100 mainly interacts with the aspartic acid residues namely Asp171 and Asp262, which are located at the extracellular ends in the CXCR4 coreceptor. Incorporation of some metal ions by the macrocyclic rings of bicyclam enhances its binding affinity to the CXCR4 receptor and enhances their anti‐HIV activity because the acetate can make a strong coordination bond to the metal and one weaker hydrogen bond to nitrogen in the cyclam ring. The interaction energy (Eint) between 150 metal–bicyclam complexes and aspartic acid has been evaluated. The metal–bicyclam complexes are obtained by the incorporation of six metal ions namely Fe3+, Co3+, Ni2+, Cu2+, Zn2+, and Pd2+ in 25 well‐known bicyclams including AMD3100. In most of the cases, Fe and Co–bicyclam complexes interact best with aspartic acid. The anti‐HIV activity of metal–bicyclam complexes can be predicted on the basis of interaction energy before the synthesis of the metal–bicyclam complex. On the basis of interaction energy, the anti‐HIV activity of bicyclam complexes can be predicted in advance to their synthesis. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

15.
Heterobinuclear metal chelates of Mn2+, Co2+ or Cu2+ and some transition metal ions with o-cresolphthalein complexone have been prepared and characterized. Elemental analyses are in agreement with proposed formulae. Thermal analyses (TGA and DTA) were used to determine the degradation products; some thermodynamic parameters were calculated. IR and UV-Vis spectra identified the mode of bonding between the metal ions and the ligand as well as its geometry. Magnetic moment determination and ESR spectra of the heterobinuclear complex revealed some antiferromagnetic interaction between the metal ions, which depends mainly on the two metal ions forming the chelate. Electrochemical studies of the complexes [DC-polarography and cyclic voltammetry (CV)] confirmed the existence and the nature of the metal ions in the chelate.  相似文献   

16.
A new colorimetric chemosensor based on a simple ternary mixture of an anionic dye, pyrogallol red (PR), a cationic polyelectrolyte, poly(diallyldimethylammonium chloride) (PDADMAC), and a metal chelator, N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA) for the colorimetric detection of Fe2+ and Fe3+ has been developed in an aqueous solution buffered at pH 5. Upon addition of Fe2+ or Fe3+ to the mixture, the absorption spectra showed a bathochromic shift; correspondingly, the solution color changed from red to blue, whereas other metal ions basically resulted in insignificant spectral and color changes. From the competitive experiments, no obvious interferences for the colorimetric detection of Fe2+ and Fe3+ were observed in the presence other metal ions. The results indicated that the mixture could be used as a potential Fe2+ and Fe3+ colorimetric and naked eye chemosensor in aqueous media. This research demonstrates that the ternary ensemble consisted of an organic dye, an oppositely charged polyelectrolyte, and a metal chelator is a versatile and convenient tool for the facile preparation of a novel chemosensor system.  相似文献   

17.
Water-soluble polymers containing carboxylic acid and sulfonic acid groups were investigated as polychelatogens under different experimental conditions in view to study their metal ion binding properties, using the liquid-phase polymer-based retention technique. The divalent metal ions investigated were: Co2+, Cu2+, Zn2+, and Cd2+. When the pH increased above 3, and especially at pH 5, metal ion retention capability increased as the majority of the functional groups are carboxylate, which can form more stable complexes with the metal ions. The retention capability also depended on the structure of the polyacid and the filtration factor, Z.  相似文献   

18.
Some investigations concerning the decolorization of Acid Red G azo dye by photooxidation with hydrogen peroxide were performed. The influences of pH, oxidant concentration, and the presence of Fe2+ or other metal ions (Co2+, Cu2+, Ni2+, Mn2+) as potential catalysts, were investigated. The best results were obtained in the presence of ferrous ions in acid and neutral media. The other ions are not as effective as Fe2+ for dye decolorization. Co2+ and Cu2+ ions have a catalytic action, at low concentration, within a wide range of pH. Ni2+ and Mn2+ ions have no catalytic effect in photooxidation with hydrogen peroxide at acid Ni2+ and Mn2+ ions have no catalytic effect in photooxidation with hydrogen peroxide at acid pH values, but show a weak action in alkaline media.  相似文献   

19.
A series of heterometallic 3d–Gd3+ complexes based on a lanthanide metalloligand, [M(H2O)6][Gd(oda)3] ? 3 H2O [M=Cr3+ ( 1‐Cr )] (H2oda=2,2′‐oxydiacetic acid), [M(H2O)6][MGd(oda)3]2 ? 3 H2O [M=Mn2+ ( 2‐Mn ), Fe2+ ( 2‐Fe ) and Co2+ ( 2‐Co )], and [M3Gd2(oda)6(H2O)6] ? 12 H2O [M=Ni2+ ( 3‐Ni ), Cu2+ ( 3‐Cu ), and Zn2+ ( 3‐Zn )], are reported. Magnetic and heat‐capacity studies revealed a significant impact on the magnetocaloric effect depending on the anisotropy of the 3d transition metal ions, as confirmed by comparison of the observed maximum values of ?ΔSm between complexes 2‐Co and 1‐Cr . In these two complexes, the 3d metal ions have the same spin (S=3/2 for Co2+ and Cr3+ ions), and the theoretical calculation suggested a larger ?ΔSm value for 2‐Co (47.8 J K?1 kg?1) than 1‐Cr (37.5 J K?1 kg?1); however, the significant anisotropy of Co2+ ions in 2‐Co , which can result in smaller effective spins, gives a smaller value of ?ΔSm for 2‐Co (32.2 J K?1 kg?1) than for 1‐Cr (35.4 J K?1 kg?1) at ΔH=9 T.  相似文献   

20.
A 1D double‐helical coordination polymer {[Cd(pbbm)2]2(ClO4)4(H2O)2}n ( 1 ) was successfully constructed by the reaction of Cd(ClO4)2 · 6H2O with 1,1′‐(1,5‐pentanediyl)bis‐1H‐benzimidazole (pbbm). Interestingly, polymer 1 exhibits highly selective capacity for the ionic exchange of Zn2+ and Cu2+ over Co2+ and Ni2+ ions in the crystalline solid state when the crystals of 1 are immersed in the aqueous solutions of the perchlorate salts of Cu2+, Zn2+, Co2+, and Ni2+ ions, respectively, which indicates that central CdII ion exchange might be considered as being dominated by the coordination ability of metal ions to free functional groups, ionic radii of exchanged metal ions, and the solution concentration of adsorbed metal salts. The parent material‐ and ion‐exchange‐induced products are identified by FT‐IR spectroscopy, PXRD patterns as well as SEM and EDS measurements. In addition, the thermal stability of 1 was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号