首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Circulating tumor cell (CTC)‐enrichment by using aptamers has a number of advantages, but the issue of compromised binding affinities and stabilities in real samples hinders its wide applications. Inspired by the high efficiency of the prey mechanism of the octopus, we engineered a deterministic lateral displacement (DLD)‐patterned microfluidic chip modified with multivalent aptamer‐functionalized nanospheres (AP‐Octopus‐Chip) to enhance capture efficiency. The multivalent aptamer–antigen binding efficiency improves 100‐fold and the capture efficiency is enhanced more than 300 % compared with a monovalent aptamer‐modified chip. Moreover, the captured cancer cells can be released through a thiol exchange reaction with up to 80 % efficiency and 96 % viability, which is fully compatible with downstream mutation detection and CTC culture. Using the chip, we were able to find CTCs in all cancer samples analyzed.  相似文献   

2.
3.
4.
Even though the diagnostic and prognostic value of circulating tumor cells (CTCs) has been demonstrated, their clinical utility and widespread adoption have been limited. Herein, we describe a new device, size‐dictated immunocapture chip (SDI‐Chip), for efficient, sensitive, and spatially resolved capture and detection of CTCs. SDI‐Chip enables selective, frequent, and extended interaction of CTCs with hydrodynamically optimized immunocoated micropillar surfaces. CTCs with different antigen expression levels can be efficiently captured and spatially resolved around the micropillars. Capture efficiency greater than 92 % with a purity of 82 % was achieved with blood samples. CTCs were detected in non‐metastasis colorectal (CRC) patients, while none was detected from healthy volunteers. We believe that SDI‐Chip will facilitate the transition of tumor diagnosis from anatomical pathology to molecular pathology in localized CRC patients.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
The detection of circulating tumor cells (CTCs) is crucial to early cancer diagnosis and the evaluation of cancer metastasis. However, it remains challenging due to the scarcity of CTCs in the blood. Herein, we report an ultrasensitive platform for the direct detection of CTCs using luminescent lanthanide nanoprobes. These were designed to recognize the epithelial cell adhesion molecules on cancer cells, allowing signal amplification through dissolution‐enhanced time‐resolved photoluminescence (TRPL) and the elimination of short‐lived autofluorescence interference. This enabled the direct detection of blood breast‐cancer cells with a limit of detection down to 1 cell/well of a 96‐well plate. Moreover, blood CTCs (≥10 cells mL?1) can be detected in cancer patients with a detection rate of 93.9 % (14/15 patients). We envision that this ultrasensitive detection platform with excellent practicality may provide an effective strategy for early cancer diagnosis and prognosis evaluation.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号