首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report the gas‐phase synthesis of stable 20‐electron carbonyl anion complexes of group 3 transition metals, TM(CO)8 (TM=Sc, Y, La), which are studied by mass‐selected infrared (IR) photodissociation spectroscopy. The experimentally observed species, which are the first octacarbonyl anionic complexes of a TM, are identified by comparison of the measured and calculated IR spectra. Quantum chemical calculations show that the molecules have a cubic (Oh) equilibrium geometry and a singlet (1A1g) electronic ground state. The 20‐electron systems TM(CO)8 are energetically stable toward loss of one CO ligand, yielding the 18‐electron complexes TM(CO)7 in the 1A1 electronic ground state; these exhibit a capped octahedral structure with C3v symmetry. Analysis of the electronic structure of TM(CO)8 reveals that there is one occupied valence molecular orbital with a2u symmetry, which is formed only by ligand orbitals without a contribution from the metal atomic orbitals. The adducts of TM(CO)8 fulfill the 18‐electron rule when only those valence electrons that occupy metal–ligand bonding orbitals are considered.  相似文献   

2.
Heteronuclear transition‐metal–main‐group‐element carbonyl complexes of AsFe(CO)3, SbFe(CO)3, and BiFe(CO)3 were produced by a laser vaporization supersonic ion source in the gas phase, and were studied by mass‐selected IR photodissociation spectroscopy and advanced quantum chemistry methods. These complexes have C3v structures with all of the carbonyl ligands bonded on the iron center, and feature covalent triple bonds between bare Group 15 elements and Fe(CO)3. Chemical bonding analyses on the whole series of AFe(CO)3 (A=N, P, As, Sb, Bi, Mc) complexes indicate that the valence orbitals involved in the triple bonds are hybridized 3d and 4p atomic orbitals of iron, leading to an unusual (dp–p) type of transition‐metal–main‐group‐element multiple bonding. The σ‐type three‐orbital interaction between Fe 3d/4p and Group 15 np valence orbitals plays an important role in the bonding and stability of the heavier AFe(CO)3 (A=As, Sb, Bi) complexes.  相似文献   

3.
We report the synthesis and spectroscopic identification of the trisbenzene complexes of strontium and barium M(Bz)3 (M=Sr, Ba) in low‐temperature Ne matrix. Both complexes are characterized by a D3 symmetric structure involving three equivalent η6‐bound benzene ligands and a closed‐shell singlet electronic ground state. The analysis of the electronic structure shows that the complexes exhibit metal–ligand bonds that are typical for transition metal compounds. The chemical bonds can be explained in terms of weak donation from the π MOs of benzene ligands into the vacant (n?1)d AOs of M and strong backdonation from the occupied (n?1)d AO of M into vacant π* MOs of benzene ligands. The metals in these 20‐electron complexes have 18 effective valence electrons, and, thus, fulfill the 18‐electron rule if only the metal–ligand bonding electrons are counted. The results suggest that the heavier alkaline earth atoms exhibit the full bonding scenario of transition metals.  相似文献   

4.
Heteronuclear Group 3 metal/iron carbonyl anion complexes ScFe(CO)3?, YFe(CO)3?, and LaFe(CO)3? are prepared in the gas phase and studied by mass‐selective infrared (IR) photodissociation spectroscopy as well as quantum‐chemical calculations. All three anion complexes are characterized to have a metal–metal‐bonded C3v equilibrium geometry with all three carbonyl ligands bonded to the iron center and a closed‐shell singlet electronic ground state. Bonding analyses reveal that there are multiple bonding interactions between the bare group‐3 elements and the Fe(CO)3? fragment. Besides one covalent electron‐sharing metal–metal σ bond and two dative π bonds from Fe to the Group 3 metal, there is additional multicenter covalent bonding with the Group 3 atom bonded to Fe and the carbon atoms.  相似文献   

5.
We report the preparation of UFe(CO)3 and OUFe(CO)3 complexes using a laser‐vaporization supersonic ion source in the gas phase. These compounds were mass‐selected and characterized by infrared photodissociation spectroscopy and state‐of‐the‐art quantum chemical studies. There are unprecedented triple bonds between U 6d/5f and Fe 3d orbitals, featuring one covalent σ bond and two Fe‐to‐U dative π bonds in both complexes. The uranium and iron elements are found to exist in unique formal U(I or III) and Fe(−II) oxidation states, respectively. These findings suggest that there may exist a whole family of stable df–d multiple‐bonded f‐element‐transition‐metal compounds that have not been fully recognized to date.  相似文献   

6.
The unexpected phenomenon and mechanism of the alkali metal involved NH3 selective catalysis are reported. Incorporation of K+ (4.22 wt %) in the tunnels of α‐MnO2 greatly improved its activity at low temperature (50–200 °C, 100 % conversion of NOx vs. 50.6 % conversion over pristine α‐MnO2 at 150 °C). Experiment and theory demonstrated the atomic role of incorporated K+ in α‐MnO2. Results showed that K+ in the tunnels could form a stable coordination with eight nearby O atoms. The columbic interaction between the trapped K+ and O atoms can rearrange the charge population of nearby Mn and O atoms, thus making the topmost five‐coordinated unsaturated Mn cations (Mn5c, the Lewis acid sites) more positive. Therefore, the more positively charged Mn5c can better chemically adsorb and activate the NH3 molecules compared with its pristine counterpart, which is crucial for subsequent reactions.  相似文献   

7.
8.
We report a Na:?→B dative bond in the NaBH3? cluster, which was designed on the principle of minimum‐energy rupture, prepared by laser vaporization, and characterized by a synergy of anion photoelectron spectroscopy and electronic structure calculations. The global minimum of NaBH3? features a Na?B bond. Its preferred heterolytic dissociation conforms with the IUPAC definition of dative bond. The lone electron pair revealed on Na and the negative Laplacian of electron density at the bond critical point further confirm the dative nature of the Na?B bond. This study represents the first example of a Lewis adduct with an alkalide as the Lewis base.  相似文献   

9.
Directed C?H functionalization has been realized as a complementary tool to the traditional approaches for a straightforward access of non‐proteinogenic amino acids; albeit such a process is restricted mostly up to the γ‐position. In the present work, we demonstrate the diverse (hetero)arylation of amino acids and analogous aliphatic amines selectively at the remote δ‐position by tuning the reactivity controlled by ligands. An organopalladium δ‐C(sp3)?H activated intermediate has been isolated and crystallographically characterized. Mechanistic investigations carried out experimentally in conjunction with computational studies shed light on the difference in the mechanistic picture depending on the substrate structure.  相似文献   

10.
11.
12.
Infrared photodissociation spectroscopy of mass‐selected heteronuclear cluster anions in the form of OMFe(CO)5 (M=Sc, Y, La) indicates that all these anions involve an 18‐electron [Fe(CO)4]2− building block that is bonded with the M center through two bridged carbonyl ligands. The OLaFe(CO)5 anion is determined to be a CO‐tagged complex involving a [Fe(CO)4]2−[LaO]+ anion core. In contrast, the OYFe(CO)5 anion is characterized to have a [Fe(CO)4]2−[Y(η2‐CO2)]+ structure involving a side‐on bonded CO2 ligand. The CO‐tagged complex and the [Fe(CO)4]2−[Sc(η2‐CO2)]+ isomer co‐exist for the OScFe(CO)5 anion. These observations indicate that both the ScO+ and YO+ cations supported on [Fe(CO)4]2− are able to oxidize CO to CO2. Theoretical analyses show that [Fe(CO)4]2− coordination significantly weakens the MO+ bond and decreases the energy gap of the interacting valence orbitals between MO+ and CO, leading to the CO oxidation reactions being both thermodynamically exothermic and kinetically facile.  相似文献   

13.
14.
15.
16.
We report the gas‐phase synthesis of stable 20‐electron carbonyl anion complexes of group 3 transition metals, TM(CO)8? (TM=Sc, Y, La), which are studied by mass‐selected infrared (IR) photodissociation spectroscopy. The experimentally observed species, which are the first octacarbonyl anionic complexes of a TM, are identified by comparison of the measured and calculated IR spectra. Quantum chemical calculations show that the molecules have a cubic (Oh) equilibrium geometry and a singlet (1A1g) electronic ground state. The 20‐electron systems TM(CO)8? are energetically stable toward loss of one CO ligand, yielding the 18‐electron complexes TM(CO)7? in the 1A1 electronic ground state; these exhibit a capped octahedral structure with C3v symmetry. Analysis of the electronic structure of TM(CO)8? reveals that there is one occupied valence molecular orbital with a2u symmetry, which is formed only by ligand orbitals without a contribution from the metal atomic orbitals. The adducts of TM(CO)8? fulfill the 18‐electron rule when only those valence electrons that occupy metal–ligand bonding orbitals are considered.  相似文献   

17.
18.
The crystal structures of PdCl2[(?)-DIOP], PtCl2[(?)-DIOP] and of NiCl2-[(?)-DIOP] have been determined by X-ray analysis and refined by least-squares methods [(?)-DIOP=(?)-2,2-dimethyl-4,5-bis(diphenylphosphinomethyl)-1,3-dioxolane]. The coordination around the nickel atom is tetrahedral, the coordination around palladium and platinum is square planar. The unit cell of the palladium complex contains two non-equivalent molecules with different conformations of the seven-membered chelate ring involving the metal and the two phosphorus atoms. PtCl2[(?)-DIOP] is isostructural with the corresponding palladium complex.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号