首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and efficient method for preparation of imines by the oxidative coupling of alcohols and amines using ABNO/KOH as the catalysts, and air as the economic and green oxidant was developed.  相似文献   

2.
The N‐alkylation of amines or ammonia with alcohols is a valuable route for the synthesis of N‐alkyl amines. However, as a potentially clean and economic choice for N‐alkyl amine synthesis, non‐noble metal catalysts with high activity and good selectivity are rarely reported. Normally, they are severely limited due to low activity and poor generality. Herein, a simple NiCuFeOx catalyst was designed and prepared for the N‐alkylation of ammonia or amines with alcohol or primary amines. N‐alkyl amines with various structures were successfully synthesized in moderate to excellent yields in the absence of organic ligands and bases. Typically, primary amines could be efficiently transformed into secondary amines and N‐heterocyclic compounds, and secondary amines could be N‐alkylated to synthesize tertiary amines. Note that primary and secondary amines could be produced through a one‐pot reaction of ammonia and alcohols. In addition to excellent catalytic performance, the catalyst itself possesses outstanding superiority, that is, it is air and moisture stable. Moreover, the magnetic property of this catalyst makes it easily separable from the reaction mixture and it could be recovered and reused for several runs without obvious deactivation.  相似文献   

3.
The direct synthesis of amides from alcohols and amines is described with the simultaneous liberation of dihydrogen. The reaction does not require any stoichiometric additives or hydrogen acceptors and is catalyzed by ruthenium N‐heterocyclic carbene complexes. Three different catalyst systems are presented that all employ 1,3‐diisopropylimidazol‐2‐ylidene (IiPr) as the carbene ligand. In addition, potassium tert‐butoxide and a tricycloalkylphosphine are required for the amidation to proceed. In the first system, the active catalyst is generated in situ from [RuCl2(cod)] (cod=1,5‐cyclooctadiene), 1,3‐diisopropylimidazolium chloride, tricyclopentylphosphonium tetrafluoroborate, and base. The second system uses the complex [RuCl2(IiPr)(p‐cymene)] together with tricyclohexylphosphine and base, whereas the third system employs the Hoveyda–Grubbs 1st‐generation metathesis catalyst together with 1,3‐diisopropylimidazolium chloride and base. A range of different primary alcohols and amines have been coupled in the presence of the three catalyst systems to afford the corresponding amides in moderate to excellent yields. The best results are obtained with sterically unhindered alcohols and amines. The three catalyst systems do not show any significant differences in reactivity, which indicates that the same catalytically active species is operating. The reaction is believed to proceed by initial dehydrogenation of the primary alcohol to the aldehyde that stays coordinated to ruthenium and is not released into the reaction mixture. Addition of the amine forms the hemiaminal that undergoes dehydrogenation to the amide. A catalytic cycle is proposed with the {(IiPr)RuII} species as the catalytically active components.  相似文献   

4.
A borrowing‐hydrogen reaction between amines and alcohols is an atom‐economic way to prepare alkylamines, ideally with water as the sole byproduct. Herein, nickel catalysts are used for direct N‐alkylation of hydrazides and arylamines using racemic alcohols. Moreover, a nickel catalyst of (S )‐binapine was used for an asymmetric N‐alkylation of benzohydrazide with racemic benzylic alcohols.  相似文献   

5.
A practical method for the synthesis of α‐chiral amines by alkylation of amines with alcohols in the absence of any transition‐metal catalysts has been developed. Under the co‐catalysis of a ketone and NaOH, racemic secondary alcohols reacted with Ellman's chiral tert‐butanesulfinamide by a hydrogen autotransfer process to afford chiral amines with high diastereoselectivities (up to >99:1). Broad substrate scope and up to a 10 gram scale production of chiral amines were demonstrated. The method was applied to the synthesis of chiral deuterium‐labelled amines with high deuterium incorporation and optical purity, including examples of chiral deuterated drugs. The configuration of amine products is found to be determined solely by the configuration of the chiral tert‐butanesulfinamide regardless of that of alcohols, and this is corroborated by DFT calculations. Further mechanistic studies showed that the reaction is initiated by the ketone catalyst and involves a transition state similar to that proposed for the Meerwein–Ponndorf–Verley (MPV) reduction, and importantly, it is the interaction of the sodium cation of the base with both the nitrogen and oxygen atoms of the sulfinamide moiety that makes feasible, and determines the diastereoselectivity of, the reaction.  相似文献   

6.
The N‐alkylation of ammonia (or its surrogates, such as urea, NH4HCO3, and (NH4)2CO3) and amines with alcohols, including primary and secondary alcohols, was efficiently promoted under anaerobic conditions by the easily prepared and inexpensive supported ruthenium hydroxide catalyst Ru(OH)x/TiO2. Various types of symmetrically and unsymmetrically substituted “tertiary” amines could be synthesized by the N‐alkylation of ammonia (or its surrogates) and amines with “primary” alcohols. On the other hand, the N‐alkylation of ammonia surrogates (i.e., urea and NH4HCO3) with “secondary” alcohols selectively produced the corresponding symmetrically substituted “secondary” amines, even in the presence of excess amounts of alcohols, which is likely due to the steric hindrance of the secondary alcohols and/or secondary amines produced. Under aerobic conditions, nitriles could be synthesized directly from alcohols and ammonia surrogates. The observed catalysis for the present N‐alkylation reactions was intrinsically heterogeneous, and the retrieved catalyst could be reused without any significant loss of catalytic performance. The present catalytic transformation would proceed through consecutive N‐alkylation reactions, in which alcohols act as alkylating reagents. On the basis of deuterium‐labeling experiments, the formation of the ruthenium dihydride species is suggested during the N‐alkylation reactions.  相似文献   

7.
以9-氮杂双环[3.3.1]壬烷-N-氧基自由基(ABNO)为电催化媒介, 在NaClO4-MeCN溶液中伯胺通过自氧化偶联反应生成对应的亚胺. 采用循环伏安法研究了ABNO对伯胺的电催化性能. 在相同条件下, 与2,2,6,6-四甲基哌啶氮氧自由基相比, ABNO在伯胺的自氧化偶联反应中表现出更好的电催化反应活性. 采用电化学原位红外光谱技术分析其中间产物为Ph—CH=NH. 在优化的反应条件下, 一系列芳香伯胺可在ABNO电催化作用下自氧化偶联生成对应的亚胺, 产率较高.  相似文献   

8.
Facile tert‐butoxycarbonylation of alcohols, phenols, and amines is described by treatment of alcohols, phenols, and amines with di‐tert‐butyl dicarbonate in the presence of a catalytic amount of bismuth(III) chloride, a mild and efficient catalyst, at room temperature in excellent yields.  相似文献   

9.
Possibly because homogeneous palladium catalysts are not typical borrowing hydrogen catalysts and ligands are thus ineffective in catalyst activation under conventional anaerobic conditions, they had not been used in the N‐alkylation reactions of amines/amides with alcohols in the past. By employing the aerobic relay race methodology with Pd‐catalyzed aerobic alcohol oxidation being a more effective protocol for alcohol activation, ligand‐free homogeneous palladiums are successfully used as active catalysts in the dehydrative N‐alkylation reactions, giving high yields and selectivities of the alkylated amides and amines. Mechanistic studies implied that the reaction most probably proceeds via the novel relay race mechanism we recently discovered and proposed.  相似文献   

10.
《中国化学》2018,36(2):147-152
One‐pot two‐step stepwise reaction of terminal propargylic alcohols, carbon dioxide, and primary/secondary amines for the effective synthesis of various urethanes through robust silver‐catalysed C‐O/C‐N bond formation is reported. Catalytic activities were investigated by controlling catalyst loading, reaction pressure and time, and very high turnover number (turnover frequency) was obtained: 3350 (35 h−1) with 0.01 mol% silver catalyst under 0.1 MPa, and up to 13360 (139 h−1) with 0.005 mol% silver catalyst under 2.0 MPa at room temperature. The strategy was ingeniously regulated, and synchronously afforded a wide range of β‐oxopropylcarbamate and 1,3‐oxazolidin‐2‐one motifs in excellent yields and selectivity together with unprecedented high turnover number (TON) and turnover frequency (TOF) value.  相似文献   

11.
The aerobic oxidation of amines offers a promising route towards many versatile chemical compounds. Within this contribution, we extend our previous investigations of iridium oxide‐catalyzed alcohol oxidation to amine substrates. In addition to demonstrating the versatility of this catalyst, particular attention is focused on the mechanisms of the reaction. Herein, we demonstrate that although amines are oxidized slower than the corresponding alcohols, the catalyst has a preference for amine substrates, and oxidizes various amines at turnover frequencies greater than other systems found in the open literature. Furthermore, the competition between double amine dehydrogenation, to yield the corresponding nitrile, and amine–imine coupling, to yield the corresponding coupled imine, has been found to arise from a competitive reaction pathway, and stems from an effect of substrate‐to‐metal ratio. Finally, the mechanism responsible for the formation of N‐benzylidene‐1‐phenylmethanamine was examined, and attributed to the coupling of free benzyl amine substrate and benzaldehyde, formed in situ through hydrolysis of the primary reaction product, benzyl imine.  相似文献   

12.
N,N′-Diiodo-N,N′-1,2-ethanediylbis(p-toluenesulfonamide) (NIBTS) is a highly efficient catalyst for the acetylation of alcohols, phenols, amines, and thiols under solvent-free conditions. Primary, secondary, tertiary alcohols; phenols; amines; and thiols can be easily acetylated in good to excellent yields at 80 °C.  相似文献   

13.
A simple formamide catalyst facilitates the efficient transformation of alcohols into alkyl chlorides with benzoyl chloride as the sole reagent. These nucleophilic substitutions proceed through iminium‐activated alcohols as intermediates. The novel method, which can be even performed under solvent‐free conditions, is distinguished by an excellent functional group tolerance, scalability (>100 g) and waste‐balance (E‐factor down to 2). Chiral substrates are converted with excellent levels of stereochemical inversion (99 %→≥95 % ee). In a practical one‐pot procedure, the primary formed chlorides can be further transformed into amines, azides, ethers, sulfides, and nitriles. The value of the method was demonstrated in straightforward syntheses of the drugs rac‐Clopidogrel and S‐Fendiline.  相似文献   

14.
Fe and Ru pincer‐type catalysts are used for the racemization of benzylic alcohols. Racemization with the Fe catalyst was achieved within 30 minutes under mild reaction conditions, with a catalyst loading as low as 2 mol %. This reaction constitutes the first example of an iron‐catalyzed racemization of an alcohol. The efficiency for racemization of the Fe catalyst and its Ru analogue was evaluated for a wide range of sec‐benzylic alcohols. The commercially available Ru complex proved to be highly robust and even tolerated the presence of water in the reaction mixture.  相似文献   

15.
Efficient ruthenium‐, rhodium‐, palladium‐, copper‐ and iridium‐catalysed methodologies have been recently developed for the synthesis of quinolines by the reaction of 2‐aminobenzyl alcohols with carbonyl compounds (aldehydes and ketones) or the related alcohols. The reaction is assumed to proceed via a sequence involving initial metal‐catalysed oxidation of 2‐aminobenzyl alcohols to the related 2‐aminobenzaldehydes, followed by cross aldol reaction with a carbonyl compound under basic conditions to afford α,β‐unsaturated carbonyl compounds. These aldehydes or ketones can be also generated in situ via dehydrogenation of the related primary and secondary alcohols. In the final step cyclodehydration of the α,β‐unsaturated carbonyl compound intermediates gives quinolines. Good yields of quinolines were also obtained by reacting 2‐nitrobenzyl alcohols and secondary alcohols in the presence of a ruthenium catalyst. Finally, aniline derivatives afforded also a useful access to quinolines by the reaction with 1,3‐propanediol or 3‐amino‐1‐propanol, or in a three‐component reaction with benzyl alcohol and aliphatic alcohols.  相似文献   

16.
Reactivity of isothiocynate moieties in the side chain of polymethacrylate with amine, alcohol, or thiol was investigated, and the reactions were applied to preparation of networked polymers. Isothiocyanate of polymer side chain rapidly reacted with amines without a catalyst, to give the corresponding thioureas. However, it did not react with alcohols or thiols under the same conditions. Using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) as a catalyst, addition of alcohols or thiols to the isothiocyanate proceeded smoothly. Addition of amines, alcohols, and thiols to isothiocyanates moiety contained in the side chain of polymethacrylate also proceeded readily with or without the catalyst, respectively, to effectively give the corresponding side chain modified polymers. Occurrence of these additions was confirmed by 1H NMR and IR measurements. Glass transition temperatures and thermal decomposition temperatures of the obtained polymers were investigated by differential scanning calorimetry and thermogravimetric analysis. Networked polymers were easily prepared by addition of 1,6‐hexamethylenediamine or hexamethylene glycol to the polymethacrylate having isothiocyanato groups. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1832–1842  相似文献   

17.
The N‐alkylation of amines in the presence of different ruthenium catalysts generated in situ was investigated. Among the various catalysts tested, the combination of [Ru3(CO)12] and N‐phenyl‐2‐(dicyclohexylphosphanyl)pyrrole showed the best performance. By applying this novel catalyst, a variety of functionalized alcohols and amines were converted into the corresponding secondary amines in high yield.  相似文献   

18.
Antimony trichloride has been found to be an efficient and expedient catalyst for the acylation of alcohols, phenols, amines, and sugars with acetic anhydride in high yields and in a short reaction time under solvent‐free conditions at room temperature. Also, racemization of chiral alcohols and epimerization of sugars were not observed in any of the substrates.  相似文献   

19.
Fe3O4@SiO2‐Ag catalyst was found to be highly active and selective in the N ‐alkylation of amines with a variety of aromatic and linear alcohols. The heterogeneous nature of the Fe3O4@SiO2‐Ag catalyst allows easy recovery and regeneration by applying an external magnet for six subsequent reaction cycles. The prepared catalyst was characterized using electron microscopy techniques, X‐ray diffraction, vibrating sample magnetometry and atomic absorption spectroscopy.  相似文献   

20.
A bimetallic catalyst (Ni/Cu‐MCM‐41) is prepared via co‐condensation method. The latter is characterized by Fourier transform infrared (FT‐IR), X‐ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDX), diffuse reflectance spectroscopy (DRS), and nitrogen adsorption–desorption analysis. Catalytic performance of Ni/Cu‐MCM‐41 is probed in N‐alkylation of amines with alcohols through a hydrogen autotransfer process. Noteworthy, this catalytic system appears very efficient for synthesis of a range of secondary and tertiary amines in good to excellent isolated yields. Moreover, the catalyst is successfully recovered and reused four times without notable decrease in its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号