首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five new diorganotin N‐[(3‐methoxy‐2‐oxyphenyl)methylene] tyrosinates, R2Sn[2‐O‐3‐MeOC6H3CH=NCH (CH2C6H4OH‐4)COO] (R = Me, 1 ; Et, 2 ; Bu, 3 ; Cy, 4 ; Ph, 5 ), have been synthesized and characterized by elemental analysis, IR, NMR (1H, 13C and 119Sn) spectra, and the X‐ray single crystal diffraction. In non‐coordinated solvent, complexes 1 – 5 have penta‐coordinated tin atom. In the solid state, 1 – 3 are centrosymmetric dimmers in which each tin atom is seven‐coordinated in a distorted pentagonal bipyramid, and 4 displays discrete molecular structure with distorted trigonal bipyramidal geometry, and the tin atom of 5 is hexa‐coordinated and possess the distorted octahedral geometry with a coordinational methanol molecule. The intermolecular O‐H???O hydrogen bonds in 1 – 4 link molecules into the different one‐dimensional supramolecular chain with R22 (30) or R22 (20) macrocycles, and the molecules of 5 are joined into a two‐dimensional supramolecular network containing R44 (24) and R44 (28) two macrocycles. Bioassay results against human tumour cell HeLa indicated that 3 ‐ 5 belonged to the efficient cytostatic agents and the activity decreased in the order 4 > 3 > 5 > 2 > 1. The fluorescence determinations show the complexes may be explored for potential luminescent materials.  相似文献   

2.
Phthalocyanine compounds of novel type based on a bridged bis‐ligand, denoted “intracavity” complexes, have been prepared. Complexation of clamshell ligand 1,1′‐[benzene‐1,2‐diylbis(methanediyloxy)]bis[9(10),16(17),23(24)‐tri‐tert‐butylphthalocyanine] (clam,tBuPc2H4, 1 ) with lanthanide(III) salts [Ln(acac)3] ? n H2O (Ln=Eu, Dy, Lu; acetylacetonate) led to formation of double‐deckers clam,tBuPc2Ln ( 2 a – c ). Formation of high molecular weight oligophthalocyanine complexes was demonstrated as well. The presence of an intramolecular covalent bridge affecting the relative arrangement of macrocycles was shown to result in specific physicochemical properties. A combination of UV/Vis/NIR and NMR spectroscopy, MALDI‐TOF mass‐spectrometry, cyclic voltammetry, and spectroelectrochemistry provided unambiguous characterization of the freshly prepared bis‐phthalocyanines, and also revealed intrinsic peculiarities in the structure–property relationship, which were supported by theoretical calculations. Unexpected NMR activity of the paramagnetic dysprosium complex 2 b in the neutral π‐radical form was observed and examined as well.  相似文献   

3.
A dicationic platinum(II) terpyridyl complex, [(tBu3tpy)Pt(OXD)Pt(tBu3tpy)](PF6)2 (tBu3tpy=4,4′,4“‐tri‐tert‐butyl‐2,2′:6′,2”‐terpyridyl, OXD=2,5‐bis(4‐ethynylphenyl)[1,3,4]oxadiazole) formed phosphorescent organogels in acetonitrile or in a mixture of acetonitrile and alcohol. The structure and properties of these emissive gels were analyzed by polarizing optical and confocal laser scanning microscopy, and by variable‐temperature 1H NMR, UV/Vis, and emission spectroscopy. Dry gels were studied by scanning electron microscopy, powder X‐ray diffraction (PXRD), and small‐angle X‐ray scattering (SAXS). SEM images of the dry gel revealed a network of interwoven nanofibers (diameter 12–60 nm, length>5 μm). Intermolecular π–π interactions between the [(tBu3tpy)PtC≡C] moieties could be deduced from the variable 1H NMR spectra. The PXRD and SAXS data showed that the assembly of the gelator could be represented by a rectangular 2D lattice of 68 Å × 14 Å. The ability of the complex to gelate a number of organic solvents is most likely due to intermolecular π–π interactions between the [(tBu3tpy)PtC≡C] moieties.  相似文献   

4.
Dilithiated di(stannyl)oligosilanes (tBu2Sn(Li)– (SiMe2)n–Sn(Li)tBu2; 4 , n = 2; 5 , n = 3) were synthesized by the reaction of lithium diisopropylamide (LDA) with the α,ω‐hydrido tin substituted oligosilanes (tBu2Sn(H)– (SiMe2)n–Sn(H)tBu2; 1 , n = 2; 2 , n = 3). Surprisingly, the reaction of 1 and 3 (tBu2Sn(H)–(SiMe2)4–Sn(H)tBu2) with LDA resulted not in the formation of the lithiated compound, but what one can find is the formation of the 5,5‐ditert.butyl‐octamethyl‐1,2,3,4‐tetrasila‐5‐stannacyclopentane ( 8 ) (n = 4) in addition to the expected product 4 (n = 4) and the 3,3,6,6‐tetratert.butyl‐octamethyl‐1,2,4,5‐tetrasila‐3,6‐distannacyclohexane ( 7 ) (n = 3). Reactions of 4 and 5 with dimethyl and diphenyldichlorosilanes yielding monocyclic Si–Sn derivatives ( 9 – 11 ) are also discussed. The solid‐state structures of 7 and 11 were determined by X‐ray crystallography.  相似文献   

5.
Three Lewis acid–base adducts t‐Bu3Ga–EPh3 (E = P 1 , As 2 , Sb 3 ) were synthesized by reactions of Ph3E and t‐Bu3Ga and characterized by heteronuclear NMR (1H, 13C (31P)) and IR spectroscopy, elemental analysis and single crystal X‐ray diffraction. Their structural parameters are discussed and compared to similar t‐Bu3Ga adducts. The strength of the donor‐acceptor interactions within 1 – 3 was investigated in solution by temperature‐dependent 1H NMR spectroscopy and by quantum chemical calculations.  相似文献   

6.
Novel polyurethanes (PUs) based on 2,2′‐[ethane‐1,2‐diylbis(nitrilomethylylidene)]diphenol and 2,2′‐[hexane‐1,6‐diylbis(nitrilomethylylidene)]diphenol as hard segments containing four aromatic diisocyanates (4,4′‐diphenylmethane diisocyanate, toluene 2,4‐diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate) have been prepared. Fourier transform infrared, UV spectrophotometry, fluorescence spectroscopy, 1H NMR and 13C NMR spectroscopy, thermogravimetric analysis, and differential thermal analysis have been used to determine the structural characterization and thermal properties of the segmented PUs. All the PUs contain domains of both semicrystalline and amorphous structures, as indicated by X‐ray diffraction. The acoustic properties have been calculated with the group contribution method. Molecular dynamics simulations have been performed on all the PUs to estimate the cohesive energy density and solubility parameter values, which compare well with the values calculated with the group contribution method. Furthermore, the simulation protocols have been applied to the PUs to produce X‐ray diffraction plots to determine the phase morphology of the PUs. The surface properties of the PUs have been estimated from the simulation protocols. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6032–6046, 2006  相似文献   

7.
In this work, we report a novel dinuclear Sn (II) complex, [Sn2(Hpdm)2(H2O)6] 2H2O 2Cl ( 1 ) (H2pdm = pyridine‐2,6‐dimethanol), which has been crystallized out and characterized by elemental analysis, FTIR, 1H and 13C NMR, single crystal X‐ray studies and Density Functional Theory (DFT) analysis. X‐ray structure of 1 has confirmed it to be a dinuclear alkoxo‐bridged Sn (II) species where each metal adopts a seven coordinate distorted pentagonal bipyramidal (pbp) geometry. This is the first hepta‐coordinated Sn (II) complex ever isolated apart from already reported stannylenes. Spin density plots from DFT support the +2 oxidation state of each tin metal. Hirshfeld surface analysis reveals the presence of various H‐bonding interactions in the molecule and molecular docking results along with DFT confirm higher binding affinity of the present complex towards DNA. Moreover, the complex exhibits promising anticancer activities against HeLa and A549 cancer cell lines.  相似文献   

8.
In a search for potential inhibitors of solid‐tumor growth, certain alkanediylbis(oxy)‐linked assemblies were synthesized and evaluated for their cytotoxicity as bis‐intercalators. Symmetrical assemblies 1b – 12b were synthesized from their respective Aryl‐OH and either dibromobutane or dibromohexane, while unsymmetrical ones 13 – 15 were prepared from Aryl1‐OH and either Aryl2‐O‐(CH2)4Br or Aryl2‐O‐(CH2)6Br. These bis‐intercalators were inactive against the growth of leukemia cells. However, some of them were active against the growth of certain solid tumors such as HOP‐62, HOP‐92 (non‐small‐cell lung cancer), SF‐265, SNB‐75, U251 (CNS cancer), A498 (renal cancer), and HS578T (breast cancer). Among them, [hexane‐1,6‐diylbis(oxy)bis(4,1‐phenylene)]bis[4H‐1‐benzopyran] ( 6b ) was especially active against the growth of all CNS cancer cell lines and also the growth of A498, HOP‐62, and HOP‐92 with GI50 values of 17.0, 20.0, and 21.8 μM , respectively.  相似文献   

9.
The title anion was synthesized by heating dimethylformamide (DMF) solution of the known Ni‐centered and Ni(CO)‐capped tin clusters [Ni@Sn9Ni(CO)]3?. The new anion represents the first example of face‐fused nine‐atom molecular clusters. The two clusters are identical elongated tricapped trigonal prisms of nido‐[Sn8Ni(CO)]6? with nickel at one of the capping positions. They are fused along a triangular face adjacent to a trigonal prismatic base and made of two Sn and one Ni atoms. The new anion is structurally characterized by single‐crystal X‐ray diffraction in the compound (K[222‐crypt])4[Sn14Ni(CO)]?DMF. Its presence in solution is corroborated by electrospray mass spectrometry.  相似文献   

10.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)n(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (n = 4; 5) and [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] The reaction of [Ru2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 2 ) with dppm yields the dinuclear species [Ru2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ) (dppm = Ph2PCH2PPh2). Under thermal or photolytic conditions 3 loses very easily one carbonyl ligand and affords the corresponding electronically and coordinatively unsaturated complex [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). 4 is also obtainable by an one‐pot synthesis from [Ru3(CO)12], an excess of tBu2PH and stoichiometric amounts of dppm via the formation of [Ru2(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)2] ( 1 ). 4 exhibits a Ru–Ru double bond which could be confirmed by addition of methylene to the dimetallacyclopropane [Ru2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ). The molecular structures of 3 , 4 and 5 were determined by X‐ray crystal structure analyses.  相似文献   

11.
A series of heteropentanuclear oxalate‐bridged Ru(NO)‐Ln (4d–4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ‐ox)(NO)}4], where Ln=Y ( 2 ), Gd ( 3 ), Tb ( 4 ), Dy ( 5 ) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] ( 1 ) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1 , 2 , and 5 were in addition analyzed by X‐ray crystallography, 1 by Ru K‐edge XAS and 1 and 2 by 13C NMR spectroscopy. X‐ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)]2? are coordinated to YIII and DyIII, respectively, with formation of [Ln{RuCl3(μ‐ox)(NO)}4]5? (Ln=Y, Dy). While YIII is eight‐coordinate in 2 , DyIII is nine‐coordinate in 5 , with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N+ ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium‐lanthanide complexes 2 – 5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC‐5) and compared with those obtained for the previously reported Os(NO)‐Ln (5d–4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y ( 6 ), Gd ( 7 ), Tb ( 8 ), Dy ( 9 )). Complexes 2 – 5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d–4f metal complexes 6 – 9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP‐MS data, indicating five‐ to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells.  相似文献   

12.
Reaction of bromoacylsilane 1 (pink solution) with tBu2MeSiLi (3.5 equiv) in a 4:1 hexane:THF solvent mixture at −78 °C to room temperature yields the solvent separated ion pair (SSIP) of silenyl lithium E‐[(tBuMe2Si)(tBu2MeSi)C=Si(SiMetBu2)] [Li⋅4THF]+ 2 a (green–blue solution). Removal of the solvent and addition of benzene converts 2 a into the corresponding contact ion pair (CIP) 2 b (violet–red solution) with two THF molecules bonded to the lithium atom. The 2 a ⇌ 2 b interconversion is reversible upon THF⇌ benzene solvent change. Both 2 a and 2 b were characterized by X‐ray crystallography, NMR and UV/Vis spectroscopy, and theoretical calculations. The degree of dissociation of the Si−Li bond has a large effect on the visible spectrum (and thus color) and on the silenylic 29Si NMR chemical shift, but a small effect on the molecular structure. This is the first report of the X‐ray molecular structure of both the SSIP and the CIP of any R2E=E′RM species (E=C, Si; E′=C, Si; M=metal).  相似文献   

13.
Reaction of bromoacylsilane 1 (pink solution) with tBu2MeSiLi (3.5 equiv) in a 4:1 hexane:THF solvent mixture at ?78 °C to room temperature yields the solvent separated ion pair (SSIP) of silenyl lithium E‐[(tBuMe2Si)(tBu2MeSi)C=Si(SiMetBu2)]? [Li?4THF]+ 2 a (green–blue solution). Removal of the solvent and addition of benzene converts 2 a into the corresponding contact ion pair (CIP) 2 b (violet–red solution) with two THF molecules bonded to the lithium atom. The 2 a ? 2 b interconversion is reversible upon THF? benzene solvent change. Both 2 a and 2 b were characterized by X‐ray crystallography, NMR and UV/Vis spectroscopy, and theoretical calculations. The degree of dissociation of the Si?Li bond has a large effect on the visible spectrum (and thus color) and on the silenylic 29Si NMR chemical shift, but a small effect on the molecular structure. This is the first report of the X‐ray molecular structure of both the SSIP and the CIP of any R2E=E′RM species (E=C, Si; E′=C, Si; M=metal).  相似文献   

14.
Synthesis, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analyses of the Tetrahalogeno‐bis‐Pyridine‐Osmium(III) Complexes cis ‐( n ‐Bu4N)[OsCl4Py2] and trans ‐( n ‐Bu4N)[OsX4Py2], X = Cl, Br By reaction of (n‐Bu4N)2[OsX6], X = Cl, Br, with pyridine and (n‐Bu4N)[BH4] tetrahalogeno‐bis‐pyridine‐osmium(III) complexes are formed and purified by chromatography. X‐ray structure determinations on single crystals have been performed of cis‐(n‐Bu4N)[OsCl4Py2] ( 1 ) (triclinic, space group P1, a = 9.4047(9), b = 10.8424(18), c = 17.007(2) Å, α = 71.833(2), β = 81.249(10), γ = 67.209(12)°, Z = 2), trans‐(n‐Bu4N)[OsCl4Py2] ( 2 ) (orthorhombic, space group P212121, a = 8.7709(12), b = 20.551(4), c = 17.174(4) Å, Z = 4) and trans‐(n‐Bu4N)[OsBr4Py2] ( 3 ) (triclinic, space group P1, a = 9.132(3), b = 12.053(3), c = 15.398(2) Å, α = 95.551(18), β = 94.12(2), γ = 106.529(19)°, Z = 2). Based on the molecular parameters of the X‐ray structure determinations and assuming C2 point symmetry for the anion of 1 and D2h point symmetry for the anions of 2 and 3 the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants of 1 are in the Cl–Os–Cl axis fd(OsCl) = 1.58, in the asymmetrically coordinated N′–Os–Cl · axes fd(OsCl · ) = 1.45, fd(OsN′) = 2.48, of 2 fd(OsCl) = 1.62, fd(OsN) = 2.42 and of 3 fd(OsBr) = 1.39 and fd(OsN) = 2.34 mdyn/Å.  相似文献   

15.
Reaction of Mo(CO)6 with Bu4NI and I2 in diglyme yielded a new butterfly MoIII cluster [Mo4OI12]2–. The structure of tetraphenylphosphonium salt was determined by X‐ray single crystal diffraction. Ph4P+ and Bu4N+ salts were further characterized by elemental analysis, mass spectrometry, energy‐dispersive X‐ray (EDX), IR, Raman, and UV/Vis spectroscopy and CVA studies. The cluster anion has a butterfly array of molybdenum atoms and can be represented as [Mo44‐O)(μ3‐I)22‐I4)I6]2–.  相似文献   

16.
A series of phosphorescent terpyridyl platinum(II) complexes with ancillary biphenylacetylide ligands, namely, [(R3tpy)PtC≡C(biphenyl)]X (R=tBu, H, or Et2N; tpy=2,2′;6′,2′′‐terpyridyl; X is an anion) were synthesized and structurally characterized by various spectroscopic techniques and X‐ray diffraction methods. Despite a lack of long alkyl chain(s) or hydrogen‐bonding motif(s), complexes [(tpy)PtC≡C(biphenyl)]Cl and [(tBu3tpy)PtC≡C(biphenyl)]X (X=Cl, ClO4, PF6, or BF4) were found to gelate water and organic solvents, respectively. The self‐aggregation of these complexes in solutions and the resulting gels were investigated with variable‐temperature (VT) 1H NMR spectroscopy, polarized optical microscopy, and absorption/emission spectroscopy. SEM micrographs on dry gels revealed entangled nanofibers with diameters of 20–40 nm and lengths of tens of micrometers. Powder X‐ray diffraction (PXRD) study revealed various degrees of crystallinity of these fibrillar nanostructures. The substituents on both the terpyridyl and acetylide ligands and counterion of these complexes play a profound but concerted role in tuning the intermolecular metal???metal and/or π–π interactions, and hence the gelation properties.  相似文献   

17.
Two new dinuclear phenyltin(IV) complexes derived from N,N′‐bis(2‐hydroxybenzyl)‐1,2‐ethanebis(dithiocarbamate) ligand, [2‐HOC6H4CH2N(CS2SnPh3)CH2]2 ( 1 ) and [2‐HOC6H4CH2N(CS2SnClPh2)CH2]2 ( 2 ) have been synthesized and characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectra. The crystal structures of complexes 1 and 2 were determined by X‐ray single crystal diffraction and show that the dithiocarbamate ligand is coordinated to the tin atom in the anisobidentate manner and the tin atom is five‐coordinated. The coordination geometry of tin atom is best described as an intermediate between trigonal bipyramidal and square pyramidal with τ‐values of 0.63 and 0.53, respectively. Intermolecular hydrogen bonds (O H···S and O H···Cl) in 1 and 2 connect neighboring molecules into a one‐dimensional supramolecular chain with the centrosymmetric cyclic motifs. Complex 1 has potent in vitro cytotoxic activity against two human tumor cell lines, CoLo205 and Bcap37, while complex 2 displays weak cytotoxic activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Open‐Chain and Cyclic As‐functionalized Stannylarsines: Synthesis, Reactions, and Structure tBu3SnAsH2 ( 1 ) reacts with MeLi to form the lithium compound tBu3SnAsHLi which reacts with tBu2SnCl2 to give the AsH‐functionalized bis(arsino)stannane tBu2Sn(AsHSntBu3)2 ( 2 ). Metallation of diarsadistannetane (tBu2SnAsH)2 ( 3 ) with two equivalents of tBuLi yields the dilithio compound (tBu2SnAsLi)2 which reacts with Me3SiCl or Me3SnCl to give the corresponding As,As′‐bis‐substituted diarsadistannetanes (tBu2SnAsSiMe3)2 ( 4 ) and (tBu2SnAsSnMe3)2 ( 5 ), respectively. The novel compounds are characterized by NMR (1H, 119Sn) and mass spectroscopy, ring compounds 4 and 5 further by X‐ray structure analysis. In the solid state both ring compounds contain molecules with planar tin‐arsenic rings and two trans‐configurated Me3Si‐ or Me3Sn‐ring substituents (space group P21/n (No. 14), Z = 2).  相似文献   

19.
A commercial oligosiloxane having two γ‐hydroxypropyl endgroups and a number‐average molecular weight (n) around 1 000 Da was condensed with Bu2Sn(OMe)2 yielding tin‐containing macrocycles but no polymers. These macrocycles reacted with γ‐thiobutyrolactone by insertion of one thiolactone per Sn—O bond. When ε‐caprolactone was added a ring‐expansion polymerization was initiated, so that the n could be controlled via the monomer/initiator (M/I) ratio. Triblock copolymers with free OH endgroups were obtained by removal of the Bu2Sn group from the cyclic polymers with 1,2‐dimercaptoethane or methanol. Analogous cyclic and linear triblockcopolymers were prepared from L ‐lactide.  相似文献   

20.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐ray Crystal Structures of [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (L = CO, PnBu3) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts with several phosphines (L) in refluxing toluene under substitution of one carbonyl ligand and yields the compounds [Ru2(CO)3L(μ‐H)(μ‐PtBu2)(μ‐dppm)] (L = PnBu3, 2 a ; L = PCy2H, 2 b ; L = dppm‐P, 2 c ; dppm = Ph2PCH2PPh2). The reactivity of 1 as well as the activated complexes 2 a – c towards phenylethyne was studied. Thus 1 , 2 a and 2 b , respectively, react with PhC≡CH in refluxing toluene with elimination of dihydrogen to the acetylide‐bridged complexes [Ru2(CO)4(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 3 ) and [Ru2(CO)3L(μ‐η1 : η2‐C≡CPh)(μ‐PtBu2)(μ‐dppm)] ( 4 a and 4 b ). The molecular structures of 3 and 4 a were determined by crystal structure analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号