首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Rates of hydride transfer from several hydride donors to benzhydrylium ions have been measured at 20 °C and used for the determination of empirical nucleophilicity parameters N and sN according to the linear free energy relationship log k20 °C=sN(N+E). Comparison of the rate constants of hydride abstraction by tritylium ions with those calculated from the reactivity parameters sN, N, and E showed fair agreement. Therefore, it was possible to convert the large number of literature data on hydride abstraction by tritylium ions into N and sN parameters for the corresponding hydride donors, and construct a reactivity scale for hydride donors covering more than 20 orders of magnitude.  相似文献   

2.
The rates of the hydride abstractions from the 2‐aryl‐1,3‐dimethyl‐benzimidazolines 1a – f by the benzhydrylium tetrafluoroborates 3a – e were determined photometrically by the stopped‐flow method in acetonitrile at 20 °C. The reactions follow second‐order kinetics, and the corresponding rate constants k2 obey the linear free energy relationship log k2(20 °C)= s(N+E), from which the nucleophile‐specific parameters N and s of the 2‐arylbenzimidazolines 1a – c have been derived. With nucleophilicity parameters N around 10, they are among the most reactive neutral C? H hydride donors which have so far been parameterized. The poor correlation between the rates of the hydride transfer reactions and the corresponding hydricities (ΔH0) indicates variable intrinsic barriers.  相似文献   

3.
The activation of C?H bonds in alkanes is currently a hot research topic in chemistry. The atomic oxygen radical anion (O?.) is an important species in C?H activation. The mechanistic details of C?H activation by O?. radicals can be well understood by studying the reactions between O?. containing transition metal oxide clusters and alkanes. Here the reactivity of scandium oxide cluster anions toward n‐butane was studied by using a high‐resolution time‐of‐flight mass spectrometer coupled with a fast flow reactor. Hydrogen atom abstraction (HAA) from n‐butane by (Sc2O3)NO? (N=1–18) clusters was observed. The reactivity of (Sc2O3)NO? (N=1–18) clusters is significantly sizedependent and the highest reactivity was observed for N=4 (Sc8O13?) and 12 (Sc24O37?). Larger (Sc2O3)NO? clusters generally have higher reactivity than the smaller ones. Density functional theory calculations were performed to interpret the reactivity of (Sc2O3)NO? (N=1–5) clusters, which were found to contain the O?. radicals as the active sites. The local charge environment around the O?. radicals was demonstrated to control the experimentally observed size‐dependent reactivity. This work is among the first to report HAA reactivity of cluster anions with dimensions up to nanosize toward alkane molecules. The anionic O?. containing scandium oxide clusters are found to be more reactive than the corresponding cationic ones in the C?H bond activation.  相似文献   

4.
Second‐order rate constants for the reactions of 2‐aryl‐4,6‐dinitrobenzotriazole 1‐oxides 1a‐d with some 4‐X‐substituted phenoxide ions 2a‐d (X = OCH3, H, Cl, and CN) have been measured in aqueous solution at 20°C. The pKa values for the σ‐complexation processes of a series of benzotriazole 1a‐d measured in water have been used to determine their electrophilicity parameters E according to the correlation E = –3.20 – 0.662 pKa (F. Terrier, S. Lakhdar, T. Boubaker, and R. Goumont, J Org Chem, 2005 , 70, 6242–6253). For these reactions, plots of log k versus the electrophilicity parameters E of the benzotriazoles 1a‐d were linear, allowing to derive the nucleophilicity parameters N and s for phenoxide ions as defined by the Mayr equation log k1 (20°C) = s (E + N) (H. Mayr, M. Patz. Angew Chem, Int Ed Engl 1994 , 33, 938–957). The N values are found to cover a range of nucleophilicity from 6.85 to 10.22, going from 4‐cyanophenoxide 2d for the least reactive ion to 4‐methoxyphenoxide 2a for the most reactive nucleophile. Good linear correlations were found between the nucleophilicity parameters N of phenoxide ions 2a‐d and the pKa values of their conjugate acids (N = –3.05 + 1.25 pKa) and the constants of the substituents X (N = 9.21 – 2.51).  相似文献   

5.
Deprotonated glutathione is among the most potent biological nucleophiles and plays an important physiological role in cellular detoxification by forming covalent conjugates with Michael acceptors. The electrophilicity E of various Michael acceptors was characterized recently according to the Patz–Mayr relation lg k2=sN(N+E). We now determined the nucleophilic reactivity (N, sN) of glutathione (GSH) in aqueous solution at 20 °C to connect published GSH reactivities (kGSH) with Mayr's electrophilicity scale (E). In this way, electrophilicities E of more than 70 Michael acceptors could be estimated, which can now be used to systematically predict novel reactions with the multitude of nucleophiles whose nucleophilicity parameters N/sN are known.  相似文献   

6.
The feasibility of carrying out nucleophilic addition from electron‐deficient heteroaromatics has been addressed through a detailed investigation of the interaction of a two 7‐substituted‐nitrobenzofurazan (R = OMe 2a ; R = Cl 2b ) with a series of substituted‐nitroaryl anions (X = 4‐NO2 1a ; X = 3‐NO2 1b ; X = 4‐CN 1c ; X = 4‐Br 1d ), all reactions first lead to the quantitative formation of the σ‐adducts 3a–d and 4a–d arising from covalent addition of the nucleophile to the C‐5 carbon. The rate and equilibrium constants for the formation of σ‐adducts 3a–d and 4a–d (k5, K 5 ) together with the rate constants for their decomposition (k?5) have been determined in methanol at 25°C, allowing a determination of intrinsic rate constants, k0 = 0.03, the lower k0 value reflects the very strong salvation by methanol of the negative charge on the nitro group. The discovery of a linear correlation between the E and pKaMeOH parameters allows a calibration of the electrophilicity power of 2a and 2b , E = ?11.67 and ?10.29, respectively. Applying the general approach to nucleophilicity/electrophilicity recently developed by Mayr et al. through the relationship log k = s(E + N), a successful ranking of our nitroaryl anions 1a–d on the general nucleophilicity scale (N) has been carried out. The N values of 1a–d are found to cover a range from 15.78 to 16.69. The results are compared with previously reported data in water and DMSO.  相似文献   

7.
Taking inspiration from yeast alcohol dehydrogenase (yADH), a benzimidazolium (BI+) organic hydride‐acceptor domain has been coupled with a 1,10‐phenanthroline (phen) metal‐binding domain to afford a novel multifunctional ligand ( L BI+) with hydride‐carrier capacity ( L BI++H?? L BIH). Complexes of the type [Cp*M( L BI)Cl][PF6]2 (M=Rh, Ir) have been made and fully characterised by cyclic voltammetry, UV/Vis spectroelectrochemistry, and, for the IrIII congener, X‐ray crystallography. [Cp*Rh( L BI)Cl][PF6]2 catalyses the transfer hydrogenation of imines by formate ion in very goods yield under conditions where the corresponding [Cp*Ir( L BI)Cl][PF6] and [Cp*M(phen)Cl][PF6] (M=Rh, Ir) complexes are almost inert as catalysts. Possible alternatives for the catalysis pathway are canvassed, and the free energies of intermediates and transition states determined by DFT calculations. The DFT study supports a mechanism involving formate‐driven Rh?H formation (90 kJ mol?1 free‐energy barrier), transfer of hydride between the Rh and BI+ centres to generate a tethered benzimidazoline (BIH) hydride donor, binding of imine substrate at Rh, back‐transfer of hydride from the BIH organic hydride donor to the Rh‐activated imine substrate (89 kJ mol?1 barrier), and exergonic protonation of the metal‐bound amide by formic acid with release of amine product to close the catalytic cycle. Parallels with the mechanism of biological hydride transfer in yADH are discussed.  相似文献   

8.
The electrophilicity parameters (E) of some trifluoromethylthiolating and difluoromethylthiolating reagents were determined by following the kinetics of their reactions with a series of enamines and carbanions with known nucleophilicity parameters (N, sN), using the linear free‐energy relationship log k2=sN(N+E). The electrophilic reactivities of these reagents cover a range of 17 orders of magnitude, with Shen and Lu's reagent 1 a being the most reactive and Billard's reagent 1 h being the least reactive electrophile. While the observed electrophilic reactivities (E) of the amido‐derived trifluoromethylthiolating reagents correlate well with the calculated Gibbs energies for heterolytic cleavage of the X?SCF3 bonds (Tt+DA), the cumol‐derived reagents 1 f and 1 g are more reactive than expected from the thermodynamics of the O?S cleavage. The E parameters of the tri/difluoromethylthiolating reagents derived in this work provide an ordering principle for their use in synthesis.  相似文献   

9.
The kinetics of the reactions of the azodicarboxylates 1 with the enamines 2 have been studied in CH3CN at 20 °C. The reactions follow a second‐order rate law and can be described by the linear free energy relationship log k2(20 °C)=s(N+E) (E=electrophilicity parameter, N=nucleophilicity parameter, and s=nucleophile‐specific slope parameter). With E parameters from ?12.2 to ?8.9, the electrophilic reactivities of 1 turned out to be comparable to those of α,β‐unsaturated iminium ions, amino‐substituted benzhydrylium ions, and ordinary Michael acceptors. While the E parameters of the azodicarboxylates 1 determined in this work also hold for their reactions with triarylphosphines, they cannot be used for estimating rate constants for their reactions with amines. Comparison of experimental and calculated rate constants for cycloadditions and ene reactions of azodicarboxylates provides information on the concertedness of these reactions.  相似文献   

10.
N‐Methyl‐L ‐phenylalanine ( 5 ), N‐methyl‐4‐nitro‐L ‐phenylalanine ( 6 ), and N,N‐dimethyl‐4‐nitro‐L ‐phenylalanine ( 7 ?H+) were investigated as substrates or inhibitors of phenylalanine ammonia lyase from Petroselinum crispum. Whereas the former was a reluctant substrate (Km =6.6 mM , kcat =0.22 s?1), no reverse reaction could be detected by using methylamine and (E)‐cinnamate ( 2 ). The Km value for ammonia in the reverse reaction by using (E)‐cinnamate ( 2 ) was determined to be 4.4 and 2.6M at pH 8.8 and 10, respectively. The N‐methylated 4‐nitro‐L ‐phenylalanines 6 and 7 showed only strong inhibitory effects (Ki =130 nM and 8 nM , resp.). These and former results are discussed in terms of the mechanism of action of phenyalalanine and histidine ammonia lyases.  相似文献   

11.
We report the synthesis of anionic diniobium hydride complexes with a series of alkali metal cations (Li+, Na+, and K+) and the counterion dependence of their reactivity with N2. Exposure of these complexes to N2 initially produces the corresponding side‐on end‐on N2 complexes, the fate of which depends on the nature of countercations. The lithium derivative undergoes stepwise migratory insertion of the hydride ligands onto the aryloxide units, yielding the end‐on bridging N2 complex. For the potassium derivative, the N?N bond cleavage takes place along with H2 elimination to form the nitride complex. Treatment of the side‐on end‐on N2 complex with Me3SiCl results in silylation of the terminal N atom and subsequent N?N bond cleavage along with H2 elimination, giving the nitride‐imide‐bridged diniobium complex.  相似文献   

12.
In this study, we theoretically investigated the mechanism underlying the high‐valent mono‐oxo‐rhenium(V) hydride Re(O)HCl2(PPh3)2 ( 1 ) catalyzed hydrosilylation of C?N functionalities. Our results suggest that an ionic SN2‐Si outer‐sphere pathway involving the heterolytic cleavage of the Si?H bond competes with the hydride pathway involving the C?N bond inserted into the Re?H bond for the rhenium hydride ( 1 ) catalyzed hydrosilylation of the less steric C?N functionalities (phenylmethanimine, PhCH=NH, and N‐phenylbenzylideneimine, PhCH=NPh). The rate‐determining free‐energy barriers for the ionic outer‐sphere pathway are calculated to be ~28.1 and 27.6 kcal mol?1, respectively. These values are slightly more favorable than those obtained for the hydride pathway (by ~1–3 kcal mol?1), whereas for the large steric C?N functionality of N,1,1‐tri(phenyl)methanimine (PhCPh=NPh), the ionic outer‐sphere pathway (33.1 kcal mol?1) is more favorable than the hydride pathway by as much as 11.5 kcal mol?1. Along the ionic outer‐sphere pathway, neither the multiply bonded oxo ligand nor the inherent hydride moiety participate in the activation of the Si?H bond.  相似文献   

13.
A kinetic study is reported for reactions of 2‐methoxy‐3‐X‐5‐nitrothiophenes 1a–d (X = SO2CH3, CO2CH3, CONH2, H) with piperidine in different solvents at 20°C. It is shown that the reactions take place through a SNAr mechanism with the initial nucleophilic addition step being rate limiting. The satisfactory Hammett correlations (log k1 vs. σ) obtained in the present system confirms that a 3‐X substituent exerts an effect on the 2‐position of the same type as that exerted from the 5‐position. The second‐order rate constants associated with these reactions are employed to determine the electrophilicity parameters E of the thiophenes 1a–d according to the relationship log k (20°C) = s(E + N) (Angew. Chem., Int. Ed. Engl. 1994, 33, 938–957). The E values of 1a–d are found to cover a range from ?21.33 to ?17.18, going from 1d , the least reactive, to 1a , the most reactive thiophene. Interestingly, a linear correlation (r2 = 0.9910) between the electrophilicity parameters E determined in this work and the Hammett's σ constants values has been observed and discussed. On the other hand, we have found that the reported rate constants of some thiophenes 1 complexation by the methoxide ion in methanol are 3.5–73.5 times higher than predicted by Mayr's approach.  相似文献   

14.
A novel scale of steric substituent constant EsD is defined from the correlation of the logarithms of the internal rotation rate (kr) at 393 K with Hancock (Esc) steric constant by means of dynamic NMR. In the inhibition of Pseudomona species lipase by 2,2′‐bis‐(N‐substituted carbamoylmethyl)biphenyls (1‐8), the logarithms of bimolecular rate constants are multiply correlated with both the Taft substituent constant σ* and EsD.  相似文献   

15.
Kinetic studies for the azo‐coupling reactions of 3‐ethoxythiophene 1 with a series of 4‐X‐substituted diazonium cations 2a‐e (X = OCH3, CH3, H, Cl, and NO2) have been investigated in acetonitrile at 20°C. The second‐order rate constants have been employed to determine the nucleophilicity parameters N and s of the thiophene 1 according the Mayr equation. Thus, the nucleophile‐specific parameters N and s of thiophene 1 have been derived and compared with the reactivities of other C‐nucleophiles in acetonitrile (pyrroles, furan, indoles, etc.). The Yukawa–Tsuno plot resulted in an excellent correlation (R2 = 0.9980) with an r value of 0.89, suggesting that the nonlinear Hammett plot observed in the present work is due to resonance demand of the π–electron donor substituent of on the –N2+ moiety. Importantly, using the concept of global electrophilicity (ω) proposed by Parr, we successfully predict the electrophilicity parameters E of seven substituted diazonium cations whose experimental data are available.  相似文献   

16.
Thermal activation of molecular oxygen is observed for the late‐transition‐metal cationic complexes [M(H)(OH)]+ with M=Fe, Co, and Ni. Most of the reactions proceed via insertion in a metal? hydride bond followed by the dissociation of the resulting metal hydroperoxide intermediate(s) upon losses of O, OH, and H2O. As indicated by labeling studies, the processes for the Ni complex are very specific such that the O‐atoms of the neutrals expelled originate almost exclusively from the substrate O2. In comparison to the [M(H)(OH)]+ cations, the ion? molecule reactions of the metal hydride systems [MH]+ (M=Fe, Co, Ni, Pd, and Pt) with dioxygen are rather inefficient, if they occur at all. However, for the solvated complexes [M(H)(H2O)]+ (M=Fe, Co, Ni), the reaction with O2 involving O? O bond activation show higher reactivity depending on the transition metal: 60% for the Ni, 16% for the Co, and only 4% for the Fe complex relative to the [Ni(H)(OH)]+/O2 couple.  相似文献   

17.
The reactivity of allenes in transition‐metal‐catalyzed C?H activation chemistry is governed by the formation of either alkenyl–metal (M–alkenyl) or metal–π‐allyl intermediates. Although either protonation or a β‐hydride elimination is feasible with a M–alkenyl intermediate, cyclization has remained unexplored to date. Furthermore, due to the increased steric hindrance, the regioselectivity for the intramolecular cyclization of the metal–π‐allyl intermediate was hampered towards the more substituted side. To address these issues, a unified approach to synthesize a diverse array of biologically and pharmaceutically relevant heterocyclic moieties by cobalt‐catalyzed directed C?H functionalization was envisioned. Upon successful implementation, the present strategy led to the regioselective formation of dihydroisoquinolin‐1(2H)‐ones, isoquinolin‐1(2H)‐ones, dihydropyridones, and pyridones.  相似文献   

18.
The ketimide anion R2C?N? is an important class of chemically robust ligand that binds strongly to metal ions and is considered ideal for supporting reactive metal fragments due to its inert spectator nature; this contrasts with R2N? amides that exhibit a wide range of reactivities. Here, we report the synthesis and characterization of a rare example of an actinide ketimide complex [Th(BIPMTMS){N(SiMe3)2}(N?CPh2)] [ 2 , BIPMTMS=C(PPh2NSiMe3)2]. Complex 2 contains Th?Ccarbene, Th? Namide and Th? Nketimide linkages, thereby presenting the opportunity to probe the preferential reactivity of these linkages. Importantly, reactivity studies of 2 with unsaturated substrates shows that insertion reactions occur preferentially at the Th? Nketimide bond rather than at the Th?Ccarbene or Th? Namide bonds. This overturns the established view that metal‐ketimide linkages are purely inert spectators.  相似文献   

19.
Rate and equilibrium constants for the reactions of pyridines with donor‐substituted benzhydrylium ions have been determined spectrophotometrically. The correlation equation log k(20 °C)=s(N+E), in which s and N are nucleophile‐specific parameters and E is an electrophile‐specific parameter, has been used to determine the nucleophilicity parameters of various pyridines in CH2Cl2 and aqueous solution and to compare them with N of other nucleophiles. It is found that the nucleophilic organocatalyst 4‐(dimethylamino)pyridine (DMAP) and tertiary phosphanes have comparable nucleophilicities and carbon basicities despite widely differing Brønsted basicities. For that reason, these reactivity parameters are suggested as guidelines for the development of novel organocatalysts. The Marcus equation is employed for the determination of the intrinsic barriers of these reactions.  相似文献   

20.
A kinetic study of the nucleophilic addition reactions of 3-cyanomethylidene-2-oxindoline derivatives with cyclic amines (namely: piperidine, morpholine and pyrrolidine) in MeCN solution at 20 °C is reported. The second-order rate constants showed of this process fit nicely the Brönsted equation log k1 = βnuc pKa + C, allowing the determination of the βnuc parameter in the range of 0.63 < βnuc < 0.77 that indicates that the degree of formation of N–C bond in the transition state is more half complete. Moreover, the analysis of the kinetic measurements based on a good linear log k (20 °C) = sN (E + N) free enthalpy relationship are used to assess the electrophilic reactivity in term of E parameter of these series of 2-oxindoline derivatives Michael acceptors. Of major interest is that the estimated E values were established to cover a domain of reactivity of ~3 units of E, ranging from −17.5 for 2-(5-chloro-2-oxindolin-3-ylidene)malononitrile (the most reactive electrophile) to −20.3 for ethyl 2-(5-chloro-1-methyl-2-oxindolin-3-ylidene)-2-cyanoacetate (the least reactive electrophile). The theoretical reactivity indices ω based on the conceptual Density Functional Theory (DFT) explains correctly the experimental electrophilicity E ordering founded in terms of experimental scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号