首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Unification of the screening protocols for a wide range of doping agents has become an important issue for doping control laboratories. This study presents the development and validation of a generic liquid chromatography/time‐of‐flight mass spectrometry (LC/TOFMS) screening method of 241 small molecule analytes from various categories of prohibited substances (stimulants, narcotics, diuretics, β2‐agonists, β‐blockers, hormone antagonists and modulators, glucocorticosteroids and anabolic agents). It is based on a single‐step liquid‐liquid extraction of hydrolyzed urine and the use of a rapid‐resolution liquid chromatography/high‐resolution time‐of‐flight mass spectrometric system acquiring continuous full scan data. Electrospray ionization in the positive mode was used. Validation parameters consisted of identification capability, limit of detection, specificity, ion suppression, extraction recovery, repeatability and mass accuracy. Detection criteria were established on the basis of retention time reproducibility and mass accuracy. The suitability of the methodology for doping control was demonstrated with positive urine samples. The preventive role of the method was proved by the case where full scan acquisition with accurate mass measurement allowed the retrospective reprocessing of acquired data from past doping control samples for the detection of a designer drug, the stimulant 4‐methyl‐2‐hexanamine, which resulted in re‐reporting a number of stored samples as positives for this particular substance, when, initially, they had been reported as negatives. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
3.
4.
5.
A quick, easy, effective method followed by ultra‐high‐pressure liquid chromatography coupled with linear ion trap–Orbitrap tandem mass spectrometry (UHPLC‐LTQ‐Orbitrap MS) was developed for the simultaneous identification and quantification of the metabolites produced by amentoflavone (AMF) in human intestinal bacteria from human feces. The method validated for quantification of AMF concerning precision, accuracy, recovery, matrix effect, stability and limits showed acceptable results. Compared with blank human intestinal bacteria chromatography, three metabolites were identified based on high‐accuracy protonated precursors and multi‐stage mass spectrometry (MSn ) using the proposed strategy. At the same time, a new method was developed for semi‐quantification of three metabolites. We describe the trend over 24 h of concentration–time curves for AMF and its metabolites. Moreover, the main metabolic pathway of AMF was clarified in human intestinal bacteria. The method was validated and successfully applied to the detection and quantification of AMF and its metabolites.  相似文献   

6.
7.
To free analytical resources for new classes of doping substances, such as banned proteins, maximization of the number of compounds that can be determined with high sensitivity in a single run is highly urgent. This study demonstrates an application of ‘wrong‐way‐round ionization’ for the simultaneous detection of multiple classes of doping substances without the need to switch the polarity. A screening method for the detection of 137 compounds from various classes of prohibited substances (stimulants, diuretics, β2‐agonists, β‐blockers, antiestrogens, glucocorticosteroids and anabolic agents) has been developed. The method involves an enzymatic hydrolysis, liquid–liquid extraction and detection by liquid chromatography/orbitrap mass spectrometry with wrong‐way‐round ionization. Up to 64% of compounds had a 10‐fold lower limit of detection (LOD) than the minimum required performance limit. To compare the efficiency of conventional ionization relative to wrong‐way‐round ionization of doping substances in + ESI, a fortified blank urine sample at the minimum required performance limit was analyzed using two ESI approaches. All compounds were detected with markedly better S/N in a high‐pH mobile phase, with the exception of acetazolamide (minimal change in S/N, < 20%).The method was validated by spiking 10 different blank urine samples at five different concentrations. Validation parameters included the LOD, selectivity, ion suppression, extraction recovery and repeatability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
9.
10.
11.
Recombinant monoclonal antibodies (MAbs) can be heterogeneous due to modifications that can occur during expression, purification or during storage. These large multichain proteins (~150 kDa) are structurally challenging for detailed characterization to identify the sites of modifications. We report the use of LTQ Orbitrap mass spectrometry to accurately measure the average masses of individual glycoforms by direct infusion of an intact antibody. To identify the site‐specific modification of methionines in the antibody caused by forced oxidation, we used a ‘middle‐down’ approach. The antibody was subjected to limited digestion using the endoproteinase Lys‐C and reduced to generate Fab heavy chain, single chain Fc and light chain fragments (~25 kDa each). These species were subjected to on‐line liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) analysis using an LTQ Orbitrap, where these large precursors were dissociated by higher‐energy collisions in the C‐trap. High resolution and accuracy achieved for resulting fragments allowed us to show in a site‐specific manner that only the methionines in the Fc heavy chain were oxidized under the studied conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Steroid hormones play a critical role in maintaining the homeostasis of human metabolism. Urine as a noninvasive sample has been extensively used in clinical diagnosis for hormones homeostasis. In this study, the simultaneous characterization of fourteen hormones in urine was performed based on ultra‐high‐performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPHLC/ESI(+)‐MS/MS) with multiple reaction monitoring in the positive ionization mode. The target hormones were cortisone, cortisol, 11‐deoxycortisol, aldosterone, corticosterone, 11‐deoxycorticosterone, progesterone, 17‐OH‐progesterone, pregnenolone, estrone, estradiol, estriol, testosterone and dehydreopiandrosterone. β‐Glucuronidase/sulfatase deconjugation and liquid–liquid extraction (LLE) were conducted for the determination of urinary hormones (free + conjugated forms). The limits of detection (LODs) ranged from 0.2 ng/mL (11‐deoxycortisol and testosterone) to 1 ng/mL (cortisone). The extraction recovery of the targeted compounds ranged from 87% to 127%, indicating sufficient extraction efficiency for the LLE process. Intraday precision was below 10% and the accuracy ranged from 84% to 122%. The profiling analysis of hormones in urine samples helps to understand the metabolic state of biological systems and can be employed as a diagnostic tool in diseases developed by endocrine‐disrupted systems.  相似文献   

14.
A new method has been developed for the simultaneous determination of 13 tropane alkaloids in tea and herbal teas using high‐performance liquid chromatography coupled to an Exactive‐Orbitrap analyzer. A mixture of methanol, water, and formic acid was used for the extraction of the target compounds followed by a solid‐phase extraction step. The validated method provided recoveries from 75 to 128% with intra‐ and interday precision lower than or equal to 24% (except for apoatropine). Limits of quantification ranged from 5 to 20 μg/kg. Eleven tea and herbal tea samples and two contaminated samples with Datura stramonium seeds were analyzed. Tropane alkaloids were detected in six samples with concentrations from 5 (apoatropine) to 4340 μg/kg (sum of physoperuvine, pseudotropine, and tropine), whereas concentrations from 5 (apoatropine) to 1725 μg/kg (sum of physoperuvine, pseudotropine, and tropine) were found in the contaminated samples.  相似文献   

15.
16.
Lignin is the second most abundant natural biopolymer and its wastes are significant sources for renewable chemicals as an alternative to conventional fossil fuels. Consequently, chemical characterization methods are required to assess the content of valuable chemicals contained in these complex lignin wastes. This short overview summarizes rapid data‐processing methods developed in our laboratory for application to full‐scan raw data from high‐resolution mass spectrometry experiments of decomposed lignin samples. The discussed graphical and statistical methods support the initial classification and elucidation of the main structural features of the lignin components without the need for time‐consuming tandem mass spectrometry analyses.  相似文献   

17.
The determination of compounds showing a very low molecular weight (i.e. < 200 Da) can be complicated when low‐resolution mass spectrometry is used in the selected‐reaction monitoring mode, since the possible number of product ions is reduced and the obtained reactions are not selective enough to overcome background noise and/or matrix interferences. In this study, the use of high‐resolution mass spectrometry based on Exactive Orbitrap was applied for the determination of a group of polar organophosphonate pesticides and transformation products (TPs), which show the aforementioned features, in agricultural soils. Namely, glyphosate, glufosinate, ethephon and their TPs, aminomethyl phosphonic acid (AMPA), 3‐methylphosphinicopropionic acid, N‐acetyl‐glufosinate and 2‐hydroxyethylphosphonic acid were analyzed. The [M‐H] ions 168.00564, 180.04202, 142.96593, 110.00016, 151.01547, 222.05259 and 124.99982 were used, respectively, for the detection and identification of the compounds. Confirmation was carried out by using accurate mass measurements of ion fragments for each compound, from neutral losses of CO2, H2O and H2CO (formaldehyde). Furthermore, the recently reported tool, relative isotopic mass defect (RΔm), was also used to support the confirmation protocol. The optimized method was fully validated at low levels, including the estimation of a not commonly used parameter: the limit of confirmation (LOC). This LOC is expressed as the lowest concentration of compound that can be confirmed using a fragment or the RΔm, and it ranged from 10 to 50 µg kg?1 for all compounds. All the data was obtained in a single injection. Finally, the method was applied to real soil samples, and glyphosate and AMPA were found at 265 µg kg?1 and 105 µg kg?1, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
19.
20.
We present an integrated approach to rapidly identify anti‐inflammatory compounds of TongmaiYangxin Pills (TMYXP), a botanical drug for the treatment of cardiovascular disease. Liquid chromatography coupled with high‐resolution mass spectrometry was used to analyze the chemical composition of TMYXP. Eighty compounds of TMYXP including flavonoids, coumarins, iridoid glycosides, saponins, and lignans, were identified unambiguously or tentatively. After the rapid isolation and bioassay, 18 fractions of TMYXP were obtained and their anti‐inflammatory activities were evaluated in lipopolysaccharide‐stimulated RAW 264.7 macrophages. We performed chemometric analysis to reveal the correlation between the chemical and pharmacological information of the fractions to facilitate the identification of active compounds. To verify the reliability of the proposed method in discovering active components from a complex mixture, activities of seven compounds, which were positively or negatively related to bioactivity according to calculation, were validated in vitro. Results indicated that six active compounds with high R values exerted certain anti‐inflammatory effects in a dose‐dependent manner with IC50 values of 53.6–204.1 μM. Our findings suggest that the integrated use of identification based on high‐resolution mass spectrometry and chemometric methods could rapidly identify active compounds from complex mixture of natural products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号