首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Titanium dioxide (TiO2) is considered a promising anode material for high‐power lithium ion batteries (LIBs) because of its low cost, high thermal/chemical stability, and good safety performance without solid electrolyte interface formation. However, the poor electronic conductivity and low lithium ion diffusivity of TiO2 result in poor cyclability and lithium ion depletion at high current rates, which hinder them from practical applications. Herein we demonstrate that hierarchically structured TiO2 microboxes with controlled internal porosity can address the aforementioned problems for high‐power, long‐life LIB anodes. A self‐templating method for the synthesis of mesoporous microboxes was developed through Na2EDTA‐assisted ion exchange of CaTiO3 microcubes. The resulting TiO2 nanorods were organized into microboxes that resemble the microcube precursors. This nanostructured TiO2 material has superior lithium storage properties with a capacity of 187 mAh g−1 after 300 cycles at 1 C and good rate capabilities up to 20 C.  相似文献   

2.
In recent years, the controlled synthesis of inorganic micro‐ and nanostructures with hollow interiors has attracted considerable attention because of their widespread potential applications. A feasible method for synthesizing Li3VO4 by a template‐free, solution synthesis of single‐crystalline microboxes with well‐defined non‐spherical morphologies has been reported. This study provides the useful information to produce other hollow structure materials to the broad audience of readers. The formation of hollow structure and the influence of raw materials have been presented. The thus‐synthesized Li3VO4 exhibited significantly improved conductivity, rate capability, and cycling life compared to commercial graphite, synthesized Li4Ti5O12, and previously reported Li3VO4.  相似文献   

3.
The design and synthesis of new materials/structures for high-performance electrochemical capacitors (ECs) is an ongoing challenge. Herein, a hierarchical porous NiCo2O4 microbox superstructure made of low-dimensional substructures was reported. The as-prepared NiCo2O4 microboxes are constructed by 2D nanosheets building units, which are futher woven by 0D nanoparticles and 1D nanowires. Such microbox superstructures combine the merits of all material dimensions in electrochemical capacitors, such as high porosity, sufficient active sites, and fast mass and charge transport. Benefiting from the structural advantages, the resultant NiCo2O4 microbox electrode exhibits ultra-high capacitor performance, i.e., the initial capacitance of 1820 F · g–1 and 96.6 % capacitance retention after 4000 cycles at 5 A · g–1.  相似文献   

4.
The metal sulfide‐carbon nanocomposite is a new class of anode material for sodium ion batteries, but its development is restricted by its relative poor rate ability and cyclic stability. Herein, we report the use of double‐helix structure of carrageenan–metal hydrogels for the synthesis of 3D metal sulfide (MxSy) nanostructure/carbon aerogels (CAs) for high‐performance sodium‐ion storage. The method is unique, and can be used to make multiple MxSy/CAs (such as FeS/CA, Co9S8/CA, Ni3S4/CA, CuS/CA, ZnS/CA, and CdS/CA) with ultra‐small nanoparticles and hierarchical porous structure by pyrolyzing the carrageenan–metal hydrogels. The as‐prepared FeS/CA exhibits a high reversible capacity and excellent cycling stability (280 mA h?1 at 0.5 A g?1 over 200 cycles) and rate performance (222 mA h?1 at 5 A g?1) when used as the anode material for sodium‐ion batteries. The work shows the value of biomass‐derived metal sulfide–carbon heterostuctures in sodium‐ion storage.  相似文献   

5.
All‐solid‐state sodium‐ion batteries that operate at room temperature are attractive candidates for use in large‐scale energy storage systems. However, materials innovation in solid electrolytes is imperative to fulfill multiple requirements, including high conductivity, functional synthesis protocols for achieving intimate ionic contact with active materials, and air stability. A new, highly conductive (1.1 mS cm?1 at 25 °C, Ea=0.20 eV) and dry air stable sodium superionic conductor, tetragonal Na3SbS4, is described. Importantly, Na3SbS4 can be prepared by scalable solution processes using methanol or water, and it exhibits high conductivities of 0.1–0.3 mS cm?1. The solution‐processed, highly conductive solidified Na3SbS4 electrolyte coated on an active material (NaCrO2) demonstrates dramatically improved electrochemical performance in all‐solid‐state batteries.  相似文献   

6.
Na‐ion batteries have been attracting intensive investigations as a possible alternative to Li‐ion batteries. Herein, we report the synthesis of SnS2 nanoplatelet@graphene nanocomposites by using a morphology‐controlled hydrothermal method. The as‐prepared SnS2/graphene nanocomposites present a unique two‐dimensional platelet‐on‐sheet nanoarchitecture, which has been identified by scanning and transmission electron microscopy. When applied as the anode material for Na‐ion batteries, the SnS2/graphene nanosheets achieved a high reversible specific sodium‐ion storage capacity of 725 mA h g?1, stable cyclability, and an enhanced high‐rate capability. The improved electrochemical performance for reversible sodium‐ion storage could be ascribed to the synergistic effects of the SnS2 nanoplatelet/graphene nanosheets as an integrated hybrid nanoarchitecture, in which the graphene nanosheets provide electronic conductivity and cushion for the active SnS2 nanoplatelets during Na‐ion insertion and extraction processes.  相似文献   

7.
A magnetic hybrid material (Fe3O4‐COOH/HKUST‐1) was easily synthesized via a two‐step simple solvothermal method. Through adding sodium acrylate directly into the synthesis of Fe3O4 spheres, the surface has more carboxyl groups. It is notable that the reactions proceed without use of organic surfactants. The magnetic hybrid material was characterized using various techniques. The magnetic hybrid material has a high specific surface area (430.15 m2 g−1) and excellent magnetism (23.65 emu g−1). It is an efficient adsorbent for removing organic dyes like methylene blue (MB) from aqueous solution. It also can be easily recovered from liquid media using an external magnetic field. Adsorption experiment shows the magnetic hybrid material possesses a high adsorption capacity (118.6 mg g−1), and has high adsorption efficiency (94.3%) after five adsorption cycles with ethanol (0.2% HCl) as eluent. The sorption kinetics and isotherm analysis indicate these sorption processes are better fitted to the pseudo‐second‐order and Langmuir equations. Thermodynamic study shows the sorption processes are spontaneous and endothermic.  相似文献   

8.
A simple one‐pot synthesis of metal selenide/reduced graphene oxide (rGO) composite powders for application as anode materials in sodium‐ion batteries was developed. The detailed mechanism of formation of the CoSex–rGO composite powders that were selected as the first target material in the spray pyrolysis process was studied. The crumple‐structured CoSex–rGO composite powders prepared by spray pyrolysis at 800 °C had a crystal structure consisting mainly of Co0.85Se with a minor phase of CoSe2. The bare CoSex powders prepared for comparison had a spherical shape and hollow structure. The discharge capacities of the CoSex–rGO composite and bare CoSex powders in the 50th cycle at a constant current density of 0.3 A g?1 were 420 and 215 mA h g?1, respectively, and their capacity retentions measured from the second cycle were 80 and 46 %, respectively. The high structural stability of the CoSex–rGO composite powders for repeated sodium‐ion charge and discharge processes resulted in superior sodium‐ion storage properties compared to those of the bare CoSex powders.  相似文献   

9.
A symmetric sodium‐ion battery with an aqueous electrolyte is demonstrated; it utilizes the NASICON‐structured Na3MnTi(PO4)3 as both the anode and the cathode. The NASICON‐structured Na3MnTi(PO4)3 possesses two electrochemically active transition metals with the redox couples of Ti4+/Ti3+ and Mn3+/Mn2+ working on the anode and cathode sides, respectively. The symmetric cell based on this bipolar electrode material exhibits a well‐defined voltage plateau centered at about 1.4 V in an aqueous electrolyte with a stable cycle performance and superior rate capability. The advent of aqueous symmetric sodium‐ion battery with high safety and low cost may provide a solution for large‐scale stationary energy storage.  相似文献   

10.
Sodium‐ion batteries are important alternative energy storage devices that have recently come again into focus for the development of large‐scale energy storage devices because sodium is an abundant and low‐cost material. However, the development of electrode materials with long‐term stability has remained a great challenge. A novel negative‐electrode material, a P2‐type layered oxide with the chemical composition Na2/3Co1/3Ti2/3O2, exhibits outstanding cycle stability (ca. 84.84 % capacity retention for 3000 cycles, very small decrease in the volume (0.046 %) after 500 cycles), good rate capability (ca. 41 % capacity retention at a discharge/charge rate of 10 C), and a usable reversible capacity of about 90 mAh g?1 with a safe average storage voltage of approximately 0.7 V in the sodium half‐cell. This P2‐type layered oxide is a promising anode material for sodium‐ion batteries with a long cycle life and should greatly promote the development of room‐temperature sodium‐ion batteries.  相似文献   

11.
Herein, we introduce a 4.0 V class high‐voltage cathode material with a newly recognized sodium superionic conductor (NASICON)‐type structure with cubic symmetry (space group P213), Na3V(PO3)3N. We synthesize an N‐doped graphene oxide‐wrapped Na3V(PO3)3N composite with a uniform carbon coating layer, which shows excellent rate performance and outstanding cycling stability. Its air/water stability and all‐climate performance were carefully investigated. A near‐zero volume change (ca. 0.40 %) was observed for the first time based on in situ synchrotron X‐ray diffraction, and the in situ X‐ray absorption spectra revealed the V3.2+/V4.2+ redox reaction with high reversibility. Its 3D sodium diffusion pathways were demonstrated with distinctive low energy barriers. Our results indicate that this high‐voltage NASICON‐type Na3V(PO3)3N composite is a competitive cathode material for sodium‐ion batteries and will receive more attention and studies in the future.  相似文献   

12.
A porous Na3V2(PO4)3 cathode material coated uniformly with a layer of approximately 6 nm carbon has been synthesized by the sol–gel method combined with a freeze‐drying process. The special porous morphology and structure significantly increases the specific surface area of the material, which greatly enlarges the contact area between the electrode and electrolyte, and consequently supplies more active sites for sodium ions. When employed as a cathode material of sodium‐ion batteries, this porous Na3V2(PO4)3/C exhibits excellent rate performance and cycling stability; for instance, it shows quite a flat potential plateau at 3.4 V in the potential window of 2.7–4.0 V versus Na+/Na and delivers an initial capacity as high as 118.9 and 98.0 mA h g?1 at current rates of 0.05 and 0.5 C, respectively, and after 50 cycles, a good capacity retention of 92.7 and 93.6 % are maintained. Moreover, even when the discharge current density is increased to 5 C (590 mA g?1), an initial capacity of 97.6 mA h g?1 can still be achieved, and an exciting capacity retention of 88.6 % is obtained after 100 cycles. The good cycle performance, excellent rate capability, and moreover, the low cost of Na3V2(PO4)3/C suggest that this material is a promising cathode for large‐scale sodium‐ion rechargeable batteries.  相似文献   

13.
Herein, mesoporous sodium vanadium phosphate nanoparticles with highly sp2‐coordinated carbon coatings (meso‐Na3V2(PO4)3/C) were successfully synthesized as efficient cathode material for rechargeable sodium‐ion batteries by using ascorbic acid as both the reductant and carbon source, followed by calcination at 750 °C in an argon atmosphere. Their crystalline structure, morphology, surface area, chemical composition, carbon nature and amount were systematically explored. Following electrochemical measurements, the resultant meso‐Na3V2(PO4)3/C not only delivered good reversible capacity (98 mAh g?1 at 0.1 A g?1) and superior rate capability (63 mAh g?1 at 1 A g?1) but also exhibited comparable cycling performance (capacity retention: ≈74 % at 450 cycles at 0.4 A g?1). Moreover, the symmetrical sodium‐ion full cell with excellent reversibility and cycling stability was also achieved (capacity retention: 92.2 % at 0.1 A g?1 with 99.5 % coulombic efficiency after 100 cycles). These attributes are ascribed to the distinctive mesostructure for facile sodium‐ion insertion/extraction and their continuous sp2‐coordinated carbon coatings, which facilitate electronic conduction.  相似文献   

14.
Titanium‐based polyanions have been intensively investigated for sodium‐ion batteries owing to their superior structural stability and thermal safety. However, their low working potential hindered further applications. Now, a cation and anion dual doping strategy is used to boost the redox potential of Ti‐based cathodes of Na3Ti0.5V0.5(PO3)3N as a new cathode material for sodium ion batteries. Both the Ti3+/Ti4+ and V3+/V4+ redox couples are reversibly accessed, leading to two distinctive voltage platforms at ca. 3.3 V and ca. 3.8 V, respectively. The remarkably improved cycling stability (86.3 %, 3000 cycles) can be ascribed to the near‐zero volume strain in this unusual cubic symmetry, which has been demonstrated by in situ synchrotron‐based X‐ray diffraction. First‐principles calculations reveal its well‐interconnected 3D Na diffusion pathways with low energy barriers, and the two‐sodium‐extracted intermediate NaTi0.5V0.5(PO3)3N is also a stable phase according to formation energy calculations.  相似文献   

15.
All‐solid‐state sodium batteries, using solid electrolyte and abundant sodium resources, show great promise for safe, low‐cost, and large‐scale energy storage applications. The exploration of novel solid electrolytes is critical for the room temperature operation of all‐solid‐state Na batteries. An ideal solid electrolyte must have high ionic conductivity, hold outstanding chemical and electrochemical stability, and employ low‐cost synthetic methods. Achieving the combination of these properties is a grand challenge for the synthesis of sulfide‐based solid electrolytes. Design of the solid electrolyte Na3SbS4 is described, realizing excellent air stability and an economic synthesis based on hard and soft acid and base (HSAB) theory. This new solid electrolyte also exhibits a remarkably high ionic conductivity of 1 mS cm?1 at 25 °C and ideal compatibility with a metallic sodium anode.  相似文献   

16.
The nickel‐catalyzed direct carboxylation of alkenes with the cheap and abundantly available C1 building block carbon dioxide (CO2) in the presence of a base has been achieved. The one‐pot reaction allows for the direct and selective synthesis of a wide range of α,β‐unsaturated carboxylates (TON>100, TOF up to 6 h?1, TON=turnover number, TOF=turnover frequency). Thus, it is possible, in one step, to synthesize sodium acrylate from ethylene, CO2, and a sodium salt. Acrylates are industrially important products, the synthesis of which has hitherto required multiple steps.  相似文献   

17.
P2‐type Na2/3Ni1/3Mn2/3O2 was synthesized by a controlled co‐precipitation method followed by a high‐temperature solid‐state reaction and was used as a cathode material for a sodium‐ion battery (SIB). The electrochemical behavior of this layered material was studied and an initial discharge capacity of 151.8 mA h g?1 was achieved in the voltage range of 1.5–3.75 V versus Na+/Na. The retained discharge capacity was found to be 123.5 mA h g?1 after charging/discharging 50 cycles, approximately 81.4 % of the initial discharge capacity. In situ X‐ray diffraction analysis was used to investigate the sodium insertion and extraction mechanism and clearly revealed the reversible structural changes of the P2‐Na2/3Ni1/3Mn2/3O2 and no emergence of the O2‐Ni1/3Mn2/3O2 phase during the cycling test, which is important for designing stable and high‐performance SIB cathode materials.  相似文献   

18.
Layered O3‐type sodium oxides (NaMO2, M=transition metal) commonly exhibit an O3–P3 phase transition, which occurs at a low redox voltage of about 3 V (vs. Na+/Na) during sodium extraction and insertion, with the result that almost 50 % of their total capacity lies at this low voltage region, and they possess insufficient energy density as cathode materials for sodium‐ion batteries (NIBs). Therefore, development of high‐voltage O3‐type cathodes remains challenging because it is difficult to raise the phase‐transition voltage by reasonable structure modulation. A new example of O3‐type sodium insertion materials is presented for use in NIBs. The designed O3‐type Na0.7Ni0.35Sn0.65O2 material displays a highest redox potential of 3.7 V (vs. Na+/Na) among the reported O3‐type materials based on the Ni2+/Ni3+ couple, by virtue of its increased Ni?O bond ionicity through reduced orbital overlap between transition metals and oxygen within the MO2 slabs. This study provides an orbital‐level understanding of the operating potentials of the nominal redox couples for O3‐NaMO2 cathodes. The strategy described could be used to tailor electrodes for improved performance.  相似文献   

19.
The title compound, (H3O)2NaAl3F12 [dihydronium sodium trialuminum(III) dodecafluoride], was obtained by solvothermal synthesis from the reaction of aluminium hydroxide, sodium hydroxide, 1,2,4‐triazole and aqueous HF in ethanol at 463 K for 48 h. The structure consists of AlF6 octahedra organized in [AlF4]n HTB‐type sheets (HTB is hexagonal tungsten bronze) separated by H3O+ and Na+ cations.  相似文献   

20.
All‐solid‐state sodium batteries (ASSSBs) with nonflammable electrolytes and ubiquitous sodium resource are a promising solution to the safety and cost concerns for lithium‐ion batteries. However, the intrinsic mismatch between low anodic decomposition potential of superionic sulfide electrolytes and high operating potentials of sodium‐ion cathodes leads to a volatile cathode–electrolyte interface and undesirable cell performance. Here we report a high‐capacity organic cathode, Na4C6O6, that is chemically and electrochemically compatible with sulfide electrolytes. A bulk‐type ASSSB shows high specific capacity (184 mAh g?1) and one of the highest specific energies (395 Wh kg?1) among intercalation compound‐based ASSSBs. The capacity retentions of 76 % after 100 cycles at 0.1 C and 70 % after 400 cycles at 0.2 C represent the record stability for ASSSBs. Additionally, Na4C6O6 functions as a capable anode material, enabling a symmetric all‐organic ASSSB with Na4C6O6 as both cathode and anode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号