首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Charge transport in conjugated polymers may be governed not only by the static microstructure but also fluctuations of backbone segments. Using molecular dynamics simulations, we predict the role of side chains in the backbone dynamics for regiorandom poly(3‐alkylthiophene‐2,5‐diyl)s (P3ATs). We show that the backbone of poly(3‐dodecylthiophene‐2‐5‐diyl) (P3DDT) moves faster than that of poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) as a result of the faster motion of the longer side chains. To verify our predictions, we investigated the structures and dynamics of regiorandom P3ATs with neutron scattering and solid state NMR. Measurements of spin‐lattice relaxations (T1) using NMR support our prediction of faster motion for side chain atoms that are farther away from the backbone. Using small‐angle neutron scattering (SANS), we confirmed that regiorandom P3ATs are amorphous at about 300 K, although microphase separation between the side chains and backbones is apparent. Furthermore, quasi‐elastic neutron scattering (QENS) reveals that thiophene backbone motion is enhanced as the side chain length increases from hexyl to dodecyl. The faster motion of longer side chains leads to faster backbone dynamics, which in turn may affect charge transport for conjugated polymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1193–1202  相似文献   

3.
The recent discovery of inhibitory compounds binding to distinct pockets on GDP‐bound Ras has renewed the view on the druggability of this crucial cancer driver. However, the origin of these pockets, which are not readily formed in the crystal structure in the absence of the compounds, is yet unclear. Herein, we explored the intrinsic flexibility of Ras?GDP on microsecond to millisecond timescales using relaxation‐based NMR experiments, and identified substantial slow dynamics with τex of 34 μs at 5 °C, which maps to the regions showing a high level of correlation with those displaying conformational differences between the inhibitor‐bound and free states. These findings, which have been demonstrated in both wild‐type Ras and the oncogenic mutant (G12V), support the mechanism of extended conformational selection for Ras–inhibitor interactions where the small molecules redistribute the protein conformational ensemble favoring the final bound states.  相似文献   

4.
Here, we demonstrate the possibility of rationally designing nanoparticle receptors with targeted affinity and selectivity for specific small molecules. We used atomistic molecular‐dynamics (MD) simulations to gradually mutate and optimize the chemical structure of the molecules forming the coating monolayer of gold nanoparticles (1.7 nm gold‐core size). The MD‐directed design resulted in nanoreceptors with a 10‐fold improvement in affinity for the target analyte (salicylate) and a 100‐fold decrease of the detection limit by NMR‐chemosensing from the millimolar to the micromolar range. We could define the exact binding mode, which features prolonged contacts and deep penetration of the guest into the monolayer, as well as a distinct shape of the effective binding pockets characterized by exposed interacting points.  相似文献   

5.
The first example of cell imaging using two independent emission components from a dinuclear d/f complex is reported. A water‐stable, cell‐permeable IrIII/EuIII dyad undergoes partial Ir→Eu energy transfer following two‐photon excitation of the Ir unit at 780 nm. Excitation in the near‐IR region generated simultaneously green Ir‐based emission and red Eu‐based emission from the same probe. The orders‐of‐magnitude difference in their timescales (Ir ca. μs; Eu ca. 0.5 ms) allowed them to be identified by time‐gated detection. Phosphorescence lifetime imaging microscopy (PLIM) allowed the lifetime of the Ir‐based emission to be measured in different parts of the cell. At the same time, the cells are simultaneously imaged by using the Eu‐based emission component at longer timescales. This new approach to cellular imaging by using dual d/f emitters should therefore enable autofluorescence‐free sensing of two different analytes, independently, simultaneously and in the same regions of a cell.  相似文献   

6.
In this study, we examine the feasibility and limitations of describing the motional behavior of three‐domain proteins in which the domains are linearly connected. In addition to attempting the determination of the internal and overall reorientational correlation times, we investigate the existence of correlations in the motions between the three domains. Since in linearly arranged three‐domain proteins, there are typically no experimental data that can directly report on motional correlation between the first and the third domain, we address this question by dynamics simulations. Two limiting cases occur: (1) for weak repulsive potentials and (2) when strong repulsive potentials are applied between sequential domains. The motions of the terminal domains become correlated in the case of strong interdomain repulsive potentials when these potentials do not allow the angle between the sequential domains to be smaller than about 60°. Using the model‐free (MF) and extended MF formalisms of Lipari and Szabo, we find that the motional behavior can be separated into two components; the first component represents the concerted overall motion of the three domains, and the second describes the independent component of the motion of each individual domain. We find that this division of the motional behavior of the protein is maintained only when their timescales are distinct and can be made when the angles between sequential domains remain between 60° and 160°. In this work, we identify and quantify interdomain motional correlations. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Today, solid‐state nuclear magnetic resonance (NMR) is one of the most powerful and versatile tools for elucidating the structures and dynamics of molecular, macromolecular, and supramolecular systems. It provides information on molecular and collective phenomena over large length scales and timescales and is particularly suited to handle noncrystalline materials. This report describes how developments in solid‐state NMR were triggered by the possibilities that became available about 30 years ago by neutron scattering and synchrotron radiation. Close analogies between NMR spectroscopy and scattering are pointed out to emphasize that the two approaches nicely complement each other. Specific examples applying the new NMR techniques to amorphous polymers and supramolecular systems are described. The findings are related to the mechanical properties of polymers as well as specific functions such as photoconductivity and proton conductivity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5031–5044, 2004  相似文献   

8.
Protein structure and dynamics can be characterized on the atomistic level with both nuclear magnetic resonance (NMR) experiments and molecular dynamics (MD) simulations. Here, we quantify the ability of the recently presented CHARMM36 (C36) force field (FF) to reproduce various NMR observables using MD simulations. The studied NMR properties include backbone scalar couplings across hydrogen bonds, residual dipolar couplings (RDCs) and relaxation order parameter, as well as scalar couplings, RDCs, and order parameters for side‐chain amino‐ and methyl‐containing groups. It is shown that the C36 FF leads to better correlation with experimental data compared to the CHARMM22/CMAP FF and suggest using C36 in protein simulations. Although both CHARMM FFs contains the same nonbond parameters, our results show how the changes in the internal parameters associated with the peptide backbone via CMAP and the χ1 and χ2 dihedral parameters leads to improved treatment of the analyzed nonbond interactions. This highlights the importance of proper treatment of the internal covalent components in modeling nonbond interactions with molecular mechanics FFs. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
The glutamine binding protein (GlnBP) binds l ‐glutamine and cooperates with its cognate transporters during glutamine uptake. Crystal structure analysis has revealed an open and a closed conformation for apo‐ and holo‐GlnBP, respectively. However, the detailed conformational dynamics have remained unclear. Herein, we combined NMR spectroscopy, MD simulations, and single‐molecule FRET techniques to decipher the conformational dynamics of apo‐GlnBP. The NMR residual dipolar couplings of apo‐GlnBP were in good agreement with a MD‐derived structure ensemble consisting of four metastable states. The open and closed conformations are the two major states. This four‐state model was further validated by smFRET experiments and suggests the conformational selection mechanism in ligand recognition of GlnBP.  相似文献   

10.
We explore charge recombination dynamics at electron donor‐acceptor heterojunctions, formed between a semiconductor polymer (PCDTBT) and a fullerene derivative (PC70BM), by means of combined time‐resolved photoluminescence and transient absorption spectroscopies. Following prompt exciton dissociation across the heterojunction, a subset of bound electron‐hole pairs recombines with a temperature‐independent rate distribution spanning submicrosecond timescales to produce luminescent charge‐transfer excitons (CTX). At 14 K, this slow mechanism is the dominant geminate charge recombination pathway, whereas we also observe CTX emission on subnanosecond timescales at 293 K. We thus find that at these temperatures, a fraction of the initial charge‐pair population is trapped deeply such that they only recombine slowly over a broad distribution of timescales by quantum tunneling. We identify geminate polaron pairs (GPP) as a reservoir of long‐lived localized states that repopulate the CTX up to microsecond timescales. The observation of such distributed geminate‐charge recombination highlights the importance of the molecular nature of specific donor–acceptor electronic interactions in defining the relaxation pathways of trapped GPP. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

11.
The general applicability of fast field‐cycling nuclear magnetic resonance relaxometry in the study of dynamics in lipid bilayers is demonstrated through analysis of binary unilamellar liposomes composed of 1,2‐dioleoyl‐sn‐glycero‐3‐posphocholine (DOPC) and cholesterol. We extend an evidence‐based method to simulating the NMR relaxation response, previously validated for single‐component membranes, to evaluate the effect of the sterol molecule on local ordering and dynamics over multiple timescales. The relaxometric results are found to be most consistent with the partitioning of the lipid molecules into affected and unaffected portions, rather than a single averaged phase. Our analysis suggests that up to 25 mol %, each cholesterol molecule orders three DOPC molecules, providing experimental backup to the findings of many molecular dynamics studies. A methodology is established for studying dynamics on multiple timescales in unilamellar membranes of more complex compositions.  相似文献   

12.
The human lectin galectin‐1 (hGal‐1) translates sugar signals, that is, β‐galactosides, into effects on the level of cells, for example, growth regulation, and has become a model for studying binding of biopharmaceutically relevant derivatives. Bound‐state conformations of Galβ‐C‐(1→3)‐Glcβ‐OMe ( 1 ) and its βGal‐(1→3)‐βGlc‐OMe disaccharide parent compound were studied by using NMR spectroscopy (transferred (TR)‐NOESY data), assisted by docking experiments and molecular dynamics (MD) simulations. The molecular recognition process involves a conformational selection event. Although free C‐glycoside access four distinct conformers in solution, hGal‐1 recognizes shape of a local minimum of compound 1 , the synΦ/synΨ conformer, not the structure at global minimum. MD simulations were run to explain, in structural terms, the observed geometry of the complex.  相似文献   

13.
Correct structural assignment of small molecules and natural products is critical for drug discovery and organic chemistry. Anisotropy‐based NMR spectroscopy is a powerful tool for the structural assignment of organic molecules, but it relies on the utilization of a medium that disrupts the isotropic motion of molecules in organic solvents. Here, we establish a quantitative correlation between the atomic structure of the alignment medium, the molecular structure of the small molecule, and molecule‐specific anisotropic NMR parameters. The quantitative correlation uses an accurate three‐dimensional molecular alignment model that predicts residual dipolar couplings of small molecules aligned by poly(γ‐benzyl‐l ‐glutamate). The technique facilitates reliable determination of the correct stereoisomer and enables unequivocal, rapid determination of complex molecular structures from extremely sparse NMR data.  相似文献   

14.
Previous molecular dynamics studies of the elastin‐like peptide (ELP) GVG(VPGVG) predict that this ELP undergoes a conformational transition from an open to a more compact closed state upon an increase in temperature. These structural changes occurring in this minimal elastin model at the so‐called inverse temperature transition (ITT), which takes place when elastin is heated to temperatures of about 20–40 oC, are investigated further in this work by means of a combined theoretical and experimental approach. To do this, additional extensive classical molecular dynamics (MD) simulations of the capped octapeptide are carried out, analyzed, and compared to data obtained from homonuclear magnetic resonance (NMR) spectroscopy of the same octapeptide. Moreover, in the previous simulations, the proline residue in the ELP is found to act as a hinge, thereby allowing for the large‐amplitude opening and closing conformational motion of the ITT. To explore the role of proline in such elastin repeating units, a point mutant (P5I), which replaces the proline residue with an isoleucine residue, is also investigated using the aforementioned theoretical and experimental techniques. The results show that the site‐directed mutation completely alters the properties of this ELP, thus confirming the importance of the highly conserved proline residue in the ITT. Furthermore, a correlation between the two different methods employed is seen. Both methods predict the mutant ELP to be present in an unstructured form and the wild type ELP to have a β‐turn‐like structure. Finally, the role of the peptidyl cis to trans isomerization of the proline hinge is assessed in detail.  相似文献   

15.
A general framework is presented for the interpretation of NMR relaxation data of proteins. The method, termed isotropic reorientational eigenmode dynamics (iRED), relies on a principal component analysis of the isotropically averaged covariance matrix of the lattice functions of the spin interactions responsible for spin relaxation. The covariance matrix, which is evaluated using a molecular dynamics (MD) simulation, is diagonalized yielding reorientational eigenmodes and amplitudes that reveal detailed information about correlated protein dynamics. The eigenvalue distribution allows one to quantitatively assess whether overall and internal motions are statistically separable. To each eigenmode belongs a correlation time that can be adjusted to optimally reproduce experimental relaxation parameters. A key feature of the method is that it does not require separability of overall tumbling and internal motions, which makes it applicable to a wide range of systems, such as folded, partially folded, and unfolded biomolecular systems and other macromolecules in solution. The approach was applied to NMR relaxation data of ubiquitin collected at multiple magnetic fields in the native form and in the partially folded A-state using MD trajectories with lengths of 6 and 70 ns. The relaxation data of native ubiquitin are well reproduced after adjustment of the correlation times of the 10 largest eigenmodes. For this state, a high degree of separability between internal and overall motions is present as is reflected in large amplitude and collectivity gaps between internal and overall reorientational modes. In contrast, no such separability exists for the A-state. Residual overall tumbling motion involving the N-terminal beta-sheet and the central helix is observed for two of the largest modes only. By adjusting the correlation times of the 10 largest modes, a high degree of consistency between the experimental relaxation data and the iRED model is reached for this highly flexible biomolecule.  相似文献   

16.
Molecular dynamics (MD) simulation can give a detailed picture of conformational equilibria of biomolecules, but it is only reliable if the force field used in the simulation is accurate, and the sampling of the conformational space accessible to the biomolecule shows many (un)folding transitions to allow for precise averages of observable quantities. Here, the use of coarse‐grained (CG) solvent MeOH and H2O models to speed up the sampling of the conformational equilibria of an octa‐β‐peptide is investigated. This peptide is thought to predominantly adopt a 314‐helical fold when solvated in MeOH, and a hairpin fold when solvated in H2O on the basis of the NMR data. Various factors such as the chirality of a residue, a force‐field modification for the solute, coarse‐graining of the solvent model, and an extension of the nonbonded interaction cut‐off radius are shown to influence the simulated conformational equilibria and the agreement with the experimental NMR data for the octa‐β‐peptide.  相似文献   

17.
Eukaryotic chromatin structure and dynamics play key roles in genomic regulation. In the current study, the secondary structure and intramolecular dynamics of human histone H4 (hH4) in the nucleosome core particle (NCP) and in a nucleosome array are determined by solid‐state NMR (SSNMR). Secondary structure elements are successfully localized in the hH4 in the NCP precipitated with Mg2+. In particular, dynamics on nanosecond to microsecond and microsecond to millisecond timescales are elucidated, revealing diverse internal motions in the hH4 protein. Relatively higher flexibility is observed for residues participating in the regulation of chromatin mobility and DNA accessibility. Furthermore, our study reveals that hH4 in the nucleosome array adopts the same structure and show similar internal dynamics as that in the NCP assembly while exhibiting relatively restricted motions in several regions consisting of residues in the N‐terminus, Loop 1, and the α3 helix region.  相似文献   

18.
The cyclic 16‐membered pentadepsipeptide cyclo(Tro‐Aib‐Aib‐Aib‐Aib) ( 1 ) was crystallized from MeOH/AcOEt/CH2Cl2, and its structure was established by X‐ray crystallography (Fig. 1). There are two symmetry‐independent molecules with different conformations in the asymmetric unit. Two intramolecular H‐bonds stabilize two β‐turns in each molecule. On the other hand, two of the four Aib residues are forced to assume a nonfavorable nonhelical conformation in each of the symmetry‐independent molecules (Table 1). The conformational study in CDCl3 solution by NMR spectroscopy and molecular dynamics (MD) simulations indicate that the averaged structure (Fig. 3) is almost the same as in the solid state.  相似文献   

19.
20.
The structure and dynamics of hydrogen‐bonded structures are of significant importance in understanding many binary mixtures. Since self‐diffusion is very sensitive to changes in the molecular weight and shape of the diffusing species, hydrogen‐bonded associated structures in dimethylsulfoxide–methanol (DMSO–MeOH) and DMSO–ethanol (DMSO–EtOH) mixtures are investigated using nuclear magnetic resonance (NMR) diffusion experiments and molecular dynamics (MD) simulations over the entire composition range at 298 K. The self‐diffusion coefficients of DMSO–MeOH and DMSO–EtOH mixtures decrease by up to 15% and 10%, respectively, with DMSO concentration, indicating weaker association as compared to DMSO–water mixtures. The calculated heat of mixing and radial distribution functions reveal that the intermolecular structures of DMSO–MeOH and DMSO–EtOH mixtures do not change on mixing. DMSO–alcohol hydrogen‐bonded dimers are the dominant species in mixtures. Direct comparison of the simulated and experimental data afford greater insights into the structural properties of binary mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号