首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In organic synthesis the Friedel–Crafts alkylation is of eminent importance, as it is a key reaction in many synthetic routes. A general access to enzymatic Friedel–Crafts alkylations would be very beneficial due to the high selectivity of biocatalysts. We used designed polyprenyl phenyl ethers to specifically address this reaction by using squalene hopene cyclases as catalysts. Polycyclic products with aromatic rings constituting important biological active compounds were obtained. Our results demonstrate that squalene hopene cyclases can be utilized for Friedel–Crafts alkylations and reveal the potential of these enzymes for chiral Brønsted acid catalysis.  相似文献   

2.
Catalytic cycloisomerization‐initiated cascade cyclizations of terminal alkynes have received tremendous interest, and been widely used in the facile synthesis of a diverse array of valuable complex heterocycles. However, these tandem reactions have been mostly limited to noble‐metal catalysis, and are initiated by an exo‐cyclization pathway. Reported herein is an unprecedented copper‐catalyzed endo‐cyclization‐initiated tandem reaction of indolyl homopropargyl amides, where copper catalyzes both the hydroamination and Friedel–Crafts alkylation process. This method allows the practical and atom‐economical synthesis of valuable bridged aza‐[n.2.1] skeletons (n=3–6) with wide substrate scope, and excellent diastereoselectivity and enantioselectivity by a chirality‐transfer strategy. Moreover, the mechanistic rationale for this novel cascade cyclization is also strongly supported by control experiments, and is distinctively different from the related gold catalysis.  相似文献   

3.
The Friedel‐Crafts alkylation (F‐CA) reaction is a special kind of carbon?carbon bond formations, which is frequently being used for the formation of such bond in some aromatic rings in organic synthesis. Its asymmetric variant gives enantiorich products. Commonly, an in situ organocatalyzed asymmetric Friedel‐Crafts alkylation (AF‐CA) proceeds via generation of an enamine as an intermediate. The organocatalyzed‐AF‐CA was discovered and established in the mid‐1980s and reviewed comprehensively in 2010. In this report, we are trying to update the applications of novel organocatalysts in the AF‐CA as a versatile synthetic strategy, which is frequently used in the effective asymmetric synthesis of complex molecules, pharmaceutically important compounds and most importantly in the total synthesis of biologically active natural products.  相似文献   

4.
The Friedel–Crafts acylation is commonly used for the synthesis of aryl ketones, and a biocatalytic version, which may benefit from the chemo‐ and regioselectivity of enzymes, has not yet been introduced. Described here is a bacterial acyltransferase which can catalyze Friedel–Crafts C‐acylation of phenolic substrates in buffer without the need of CoA‐activated reagents. Conversions reach up to >99 %, and various C‐ or O‐acyl donors, such as DAPG or isopropenyl acetate, are accepted by this enzyme. Furthermore the enzyme enables a Fries rearrangement‐like reaction of resorcinol derivatives. These findings open an avenue for the development of alternative and selective C−C bond formation methods.  相似文献   

5.
The alkylation of arenes is an essential synthetic step of interest not only from the academic point of view but also in the bulk chemical industry. Despite its limitations, the Friedel–Crafts reaction is still the method of choice for most of the arene alkylation processes. Thus, the development of new strategies to synthesize alkyl arenes is a highly desirable goal, and herein, we present an alternative method to those conventional reactions. Particularly, a simple protocol for the direct C?H alkylation of unbiased arenes with alkylboronic acids in the presence of Mn(OAc)3?2H2O is reported. Primary or secondary unactivated alkylboronic acids served as alkylating agents for the direct functionalization of representative polyaromatic hydrocarbons (PAHs) or benzene. The results are consistent with a free‐radical mechanism.  相似文献   

6.
π‐Conjugated macrocycles containing all‐benzenoid rings usually show local aromaticity, but reported herein is the macrocycle CBQT , containing alternating para‐quinodimethane and triphenylamine units displaying annulene‐like anti‐aromaticity at low temperatures as a result of structural rigidity and participation of the bridging nitrogen atoms in π‐conjugation. It was easily synthesized by intermolecular Friedel–Crafts alkylation followed by oxidative dehydrogenation. X‐ray crystallographic structures of CBQT , as well as those of its dication, trication, and tetracation were obtained. The dication and tetracation exhibited global aromaticity and antiaromaticity, respectively, as confirmed by NMR measurements and theoretical calculations. Both the dication and tetracation possess open‐shell singlet ground states, with a small singlet–triplet gap.  相似文献   

7.
Acid‐catalyzed Friedel–Crafts alkylation of 1,3‐dicarbonyl compounds with electrophilic alcohols, is known to be an effective C? C bond forming reaction. However, until now, this reaction has not been amenable for α‐alkylation of aryl methyl ketones because of the notoriously low nucleophilicities of these compounds. Therefore, α‐alkylation of aryl methyl ketone relies on precious metal catalysts and also, the use of primary alcohols is mandatory. In this study, we found that a system composed of a Fe(OTf)3 catalyst and chlorobenzene solvent is sufficient to promote the title Friedel–Crafts reaction by using benzhydrols as electrophiles. 3,4‐Dihydro‐9‐(2‐hydroxy‐4,4‐dimethyl‐6‐oxo‐1‐cyclohexen‐1‐yl)‐3,3‐dimethyl‐xanthen‐1(2 H)‐one was also applicable as an electrophile in this type of benzylation reaction. On the basis of this result, a three‐component reaction of salicylaldehyde, dimedone, and aryl methyl ketone was also developed, and this provided an efficient way for the synthesis of densely substituted 4H‐chromene derivatives.  相似文献   

8.
Quinoidal thia‐acene analogues, as the respective isoelectronic structures of pentacene and nonacene, were synthesized and an unusual 1,2‐sulfur migration was observed during the Friedel–Crafts alkylation reaction. The analogues display a closed‐shell quinoidal structure in the ground state with a distinctive dipolar character. In contrast to their acene isoelectronic structures, both compounds are stable because of the existence of more aromatic sextet rings, a dipolar character, and kinetic blocking. They exhibit unique packing in single crystals resulting from balanced dipole–dipole and [C? H???π]/[C? H???S] interactions.  相似文献   

9.
The Friedel–Crafts acylation is commonly used for the synthesis of aryl ketones, and a biocatalytic version, which may benefit from the chemo- and regioselectivity of enzymes, has not yet been introduced. Described here is a bacterial acyltransferase which can catalyze Friedel–Crafts C-acylation of phenolic substrates in buffer without the need of CoA-activated reagents. Conversions reach up to >99 %, and various C- or O-acyl donors, such as DAPG or isopropenyl acetate, are accepted by this enzyme. Furthermore the enzyme enables a Fries rearrangement-like reaction of resorcinol derivatives. These findings open an avenue for the development of alternative and selective C−C bond formation methods.  相似文献   

10.
The first arylation strategy for the synthesis of enantioenriched propargylamines is disclosed. This approach, which is complementary to previous alkynylation and alkylation strategies, involves a C(sp2)?C(sp3) bond formation, and is based on the first asymmetric Friedel–Crafts‐type arylation reaction of C‐alkynyl imines. Asymmetric Friedel–Crafts reactions with electron‐deficient phenols, a longstanding unsolved challenge, have thus been realized for the first time, enabled by the combination of our recently introduced C‐alkynyl N‐Boc‐protected N,O‐acetals as electrophiles and chiral phosphoric acids as catalysts. The synthetic utility of the resulting structurally diverse and polyfunctional chiral propargylamines was demonstrated by a series of selective transformations, including controlled reduction of the alkynyl group and iterative cross‐couplings.  相似文献   

11.
The reactions of aryl aldimines derived from thiophene‐2‐carbaldehyde ( 5–9 ) with 2,2,6‐trimethyl‐1,3‐dioxin‐4‐one (1) were investigated. The new 1,3‐oxazin‐4‐ones and thienylidene acetoacetamides were obtained in good yields. The synthetic utility of the latter via an intramolecular tandem Friedel–Crafts alkylation–acylation to give tetracyclic heterocyclic rings was also explored.  相似文献   

12.
Jiaxi Xu  Jiakun Xia  Yu Lan 《合成通讯》2013,43(17):2347-2353
1,1‐Bis(4‐alkylthiophenyl)‐1‐alkenes were conveniently and efficiently prepared from alkyl phenyl sulfides and acyl chlorides via a tandem Friedel–Crafts acylation and alkylation in the presence of anhydrous aluminum chloride. The scope, limitation, and mechanism of the tandem reaction were also discussed.  相似文献   

13.
The first examples of 3,3‐diaryloxetanes are prepared in a lithium‐catalyzed and substrate dependent divergent Friedel–Crafts reaction. para‐Selective Friedel–Crafts reactions of phenols using oxetan‐3‐ols afford 3,3‐diaryloxetanes by displacement of the hydroxy group. These constitute new isosteres for benzophenones and diarylmethanes. Conversely, ortho‐selective Friedel–Crafts reactions of phenols afford 3‐aryl‐3‐hydroxymethyl‐dihydrobenzofurans by tandem alkylation–ring‐opening reactions; the outcome of the reaction diverging to structurally distinct products dependent on the substrate regioselectivity. Further reactivity of the oxetane products is demonstrated, suitable for incorporation into drug discovery efforts.  相似文献   

14.
Intermolecular alkylations of electron‐deficient arenes proceed with good para selectivity. Palladium catalysts were used to generate nucleophilic alkyl radicals from alkyl halides, which then directly add onto the arenes. The arene scope and the site of alkylation are opposite to those of classical Friedel–Crafts alkylations, which prefer electron‐rich systems.  相似文献   

15.
Alkylation of arenes is one of the most fundamental transformations in chemical synthesis and leads to privileged scaffolds in many areas of science. Classical methods for the introduction of alkyl groups to arenes are mostly based on the Friedel–Crafts reaction, radical additions, metalation, or prefunctionalization of the arene: these methods, however, suffer from limitations in scope, efficiency, and selectivity. Moreover, they are based on the innate reactivity of the starting arene, favoring the alkylation at a certain position and rendering the introduction of alkyl chains at other positions much more challenging. This can be addressed by the use of a directing group that facilitates, in the presence of a metal catalyst, the regioselective alkylation of a C?H bond. These directed alkylations of C?H bonds in arenes will be comprehensively summarized in this Review.  相似文献   

16.
An improved synthetic pathway to the nanobelt‐like 1,1,9,9‐tetramethyl[9](2,11)teropyrenophane has been developed, and enables the synthesis of gram quantities of material. Key innovations are the development of a sequential chlorination/Friedel–Crafts alkylation reaction, a sequential iodination/Wurtz coupling reaction, and a room‐temperature teropyrene‐forming reaction. The teropyrenophane was found to form a very stable radical cation and undergo a completely regioselective fourfold bromination reaction.  相似文献   

17.
An efficient process involving the catalytic kinetic resolution of racemic spiro‐epoxyoxindoles with the simultaneous enantioselective Friedel–Crafts alkylation of indoles has been realized using a chiral phosphoric acid catalyst. The reaction provides two useful intermediates in high yields and excellent enantioselectivities. Performing the catalysis on a gram scale led to (R)‐3‐(3‐indolyl)‐oxindole‐3‐methanol, which was used in the asymmetric formal total synthesis of (+)‐gliocladin C. Notably, the enantiomers (S)‐3‐(3‐indolyl)‐oxindole‐3‐methanol can be obtained easily by the reaction of the resolved spiro‐epoxyoxindole with indole.  相似文献   

18.
The Friedel-Crafts alkylation of indoles with nitroacrylates could provide α- and β-tryptophan nitro-precursors, respectively, in moderate to good yields under Lewis acid catalysis. The diastereoselectivities of the reaction were enhanced by using 2-substituted indoles. The alkylation products could be easily transformed to nonnatural tryptophan derivatives.  相似文献   

19.
The selective activation of unreactive hydrocarbons by biosynthetic enzymes has inspired new synthetic methods in C−H bond activation. Herein, we report the unprecedented two‐step biosynthetic conversion of thiotetromycin to thiotetroamide C involving the tandem oxidation and amidation of an unreactive ethyl group. We detail the genetic and biochemical basis for the terminal amidation in thiotetroamide C biosynthesis, which involves a uniquely adapted cytochrome P450–amidotransferase enzyme pair and highlights the first oxidation–amidation enzymatic cascade reaction leading to the selective formation of a primary amide group from a chemically inert alkyl group. Motivated by the ten‐fold increase in antibiotic potency of thiotetroamide C ascribed to the acetamide group and the unusual enzymology involved, we enzymatically interrogated diverse thiolactomycin analogues and prepared an unnatural thiotetroamide C analogue with potentiated bioactivity compared to the parent molecule.  相似文献   

20.
The use of urea as either a carbon or a nitrogen source enabled the synthesis of various early‐transition‐metal nitride and carbide nanoparticles (TiN, NbN, Mo2N, W2N, NbCxN1?x, Mo2C and WC). The ability of these particles to promote alkylation reactions with alcohols was tested on benzyl alcohol and acetophenone at 150 °C for 20 h in xylene. Group IV and V ceramics proved to be able to catalyse the formation of 1,3‐diphenyl propenone, whereas group VI ceramics showed a tendency to promote the Friedel–Crafts‐type reaction of benzyl alcohol on xylene (the solvent). TiN featured the highest activity for the alkylation of ketones and was further tested for more difficult alkylations. Group VI ceramics were further investigated as catalysts for the Friedel–Crafts‐type alkylation of aromatics with activated alcohols. Interestingly, even hexanol could be effectively used for these reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号