首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal–organic framework (MOF) nanosheets could serve as ideal building blocks of molecular sieve membranes owing to their structural diversity and minimized mass‐transfer barrier. To date, discovery of appropriate MOF nanosheets and facile fabrication of high performance MOF nanosheet‐based membranes remain as great challenges. A modified soft‐physical exfoliation method was used to disintegrate a lamellar amphiprotic MOF into nanosheets with a high aspect ratio. Consequently sub‐10 nm‐thick ultrathin membranes were successfully prepared, and these demonstrated a remarkable H2/CO2 separation performance, with a separation factor of up to 166 and H2 permeance of up to 8×10−7 mol m−2 s−1 Pa−1 at elevated testing temperatures owing to a well‐defined size‐exclusion effect. This nanosheet‐based membrane holds great promise as the next generation of ultrapermeable gas separation membrane.  相似文献   

2.
An efficient chemical way to finely control the layer‐by‐layer stacking of inorganic nanosheets (NS) is developed by tuning the type and composition of intercalant ion, and the reaction temperature for restacking process. The finely controlled stacking of NS relies on a kinetic control of the self‐assembly of NS in the presence of coordinating organic cations. A critical role of organic cations in this assembly highlights the importance of the appropriate activation energy. Of prime importance is that a fine‐control of the interstratification of 2D NS is highly effective not only in tailoring its pore structure but also in enhancing its electrode activity. The present study clearly demonstrates that the kinetically controlled restacking of NS provides a facile and powerful method to tailor their stacking number and functionality.  相似文献   

3.
A highly oriented mesoporous graphitic carbon nanospring (OGCS) with graphitic layers that are perpendicular to the axis is prepared by hydrothermal treatment of epoxy resin at 500 °C and annealing at 1400 °C. Water plays an important role in not only forming the graphitic carbon nanospring with a high [002] orientation and a large amount of active edge‐plane sites, but also in the generation of the mesoporous structure, which facilitate fast K‐ion adsorption and diffusion. In situ and ex situ measurements confirm that OGCS undergoes K‐adsorption in mesopores and then K‐intercalation in the graphite layer to form KC8 with a low discharge voltage. The spring‐like nanostructure can expand one‐dimensionally along the axial direction to accommodate the volume variation. The OGCS electrode thus shows a much better K‐storage performance than that of unoriented graphitic carbon.  相似文献   

4.
Mussel‐inspired two‐dimensional freestanding, alkyl‐polydopamine (alkyl‐PDA) Janus nanosheets, with a well‐controlled nanometer thickness and a lateral size of up to micrometers, have been developed. A self‐assembled octadecylamine (ODA) bilayer is used as the reactive template for the dopamine polymerization, resulting in the formation of well‐defined nanosheets. The alkyl‐PDA nanosheets show an amphiphilic nature with hydrophilic PDA and hydrophobic alkyl chains on opposing sides. The nanosheets can be used to functionalize many substrates and is dependent on the configuration of surface of the nanosheets. The nanosheets are quite stable, as the morphology is preserved after carbonization at 900 °C. Post‐modification of the nanosheets can be easily achieved because of the reactive nature of PDA. This work will provide a new strategic approach for fabricating polymeric Janus nanosheets, which can find applications for surface modifications, catalyst supports, and guided self‐assembly.  相似文献   

5.
As a remarkable class of plasmonic materials, two dimensional (2D) semiconductor compounds have attracted attention owing to their controlled manipulation of plasmon resonances in the visible light spectrum, which outperforms conventional noble metals. However, tuning of plasmonic resonances for 2D semiconductors remains challenging. Herein, we design a novel method to obtain amorphous molybdenum oxide (MoO3) nanosheets, in which it combines the oxidation of MoS2 and subsequent supercritical CO2‐treatment, which is a crucial step for the achievement of amorphous structure of MoO3. Upon illumination, hydrogen‐doped MoO3 exhibits tuned surface plasmon resonances in the visible and near‐IR regions. Moreover, a unique behavior of the amorphous MoO3 nanosheets has been found in an optical biosensing system; there is an optimum plasmon resonance after incubation with different BSA concentrations, suggesting a tunable plasmonic device in the near future.  相似文献   

6.
Chiral structures created through the adsorption of molecules onto achiral surfaces play pivotal roles in many fields of science and engineering. Here, we present a systematic study of a novel chiral phenomenon on a surface in terms of organizational chirality, that is, meso‐isomerism, through coverage‐driven hierarchical polymorphic transitions of supramolecular assemblies of highly symmetric π‐conjugated molecules. Four coverage‐dependent phases of dehydrobenzo[12]annulene were uniformly fabricated on Ag(111), exhibiting unique chiral characteristics from the single‐molecule level to two‐dimensional supramolecular assemblies. All coverage‐driven phase transitions stem from adsorption‐induced pseudo‐diastereomerism, and our observation of a lemniscate‐type (∞) supramolecular configuration clearly reveals a drastic chiral phase transition from an enantiomeric chiral domain to a meso‐isomeric achiral domain. These findings provide new insights into controlling two‐dimensional chiral architectures on surfaces.  相似文献   

7.
Two‐dimensional (2D) organic–inorganic hybrid perovskite nanosheets (NSs) are attracting increasing research interest due to their unique properties and promising applications. Here, for the first time, we report the facile synthesis of single‐ and few‐layer free‐standing phenylethylammonium lead halide perovskite NSs, that is, (PEA)2PbX4 (PEA=C8H9NH3, X=Cl, Br, I). Importantly, their lateral size can be tuned by changing solvents. Moreover, these ultrathin 2D perovskite NSs exhibit highly efficient and tunable photoluminescence, as well as superior stability. Our study provides a simple and general method for the controlled synthesis of 2D perovskite NSs, which may offer a new avenue for their fundamental studies and optoelectronic applications.  相似文献   

8.
Metal–organic framework (MOFs) two‐dimensional (2D) nanosheets have many coordinatively unsaturated metal sites that act as active centres for catalysis. To date, limited numbers of 2D MOFs nanosheets can be obtained through top‐down or bottom‐up synthesis strategies. Herein, we report a 2D oxide sacrifice approach (2dOSA) to facilely synthesize ultrathin MOF‐74 and BTC MOF nanosheets with a flexible combination of metal sites, which cannot be obtained through the delamination of their bulk counterparts (top‐down) or the conventional solvothermal method (bottom‐up). The ultrathin iron–cobalt MOF‐74 nanosheets prepared are only 2.6 nm thick. The sample enriched with surface coordinatively unsaturated metal sites, exhibits a significantly higher oxygen evolution reaction reactivity than bulk FeCo MOF‐74 particles and the state‐of‐the‐art MOF catalyst. It is believed that this 2dOSA could provide a new and simple way to synthesize various ultrathin MOF nanosheets for wide applications.  相似文献   

9.
10.
A significant number of isolable silylenes are currently known. They have quickly developed from laboratory curiosities to useful ligands in metal‐mediated homogeneous catalysis. This includes their utilization in various catalytic transformations, such as C?C cross‐coupling, cyclotrimerization, hydroformylation, borylation, deuteration, hydrosilylation, amination, hydrogenation, and transfer semi‐hydrogenation reactions. Recent studies suggest that the silylene ligands surpass the steering properties of their phosphine and N‐heterocyclic carbene (NHC) analogues and provide excellent chemo‐, regio‐, and stereoselectivites. Mechanistic studies suggest that their promoted performance of metal‐mediated catalytic transformations results from a strong σ‐donor character along with cooperative effects of their SiII centers. This Minireview covers the most recent advances in the field.  相似文献   

11.
We discuss here a unique flexible non‐carbonaceous layered host, namely, metal titanium niobates (M‐Ti‐niobate, M: Al3+, Pb2+, Sb3+, Ba2+, Mg2+), which can synergistically store both lithium ions and sodium ions via a simultaneous intercalation and alloying mechanisms. M‐Ti‐niobate is formed by ion exchange of the K+ ions, which are specifically located inside galleries between the layers formed by edge and corner sharing TiO6 and NbO6 octahedral units in the sol‐gel synthesized potassium titanium niobate (KTiNbO5). Drastic volume changes (approximately 300–400 %) typically associated with an alloying mechanism of storage are completely tackled chemically by the unique chemical composition and structure of the M‐Ti‐niobates. The free space between the adjustable Ti/Nb octahedral layers easily accommodates the volume changes. Due to the presence of an optimum amount of multivalent alloying metal ions (50–75 % of total K+) in the M‐Ti‐niobate, an efficient alloying reaction takes place directly with ions and completely eliminates any form of mechanical degradation of the electroactive particles. The M‐Ti‐niobate can be cycled over a wide voltage range (as low as 0.01 V) and displays remarkably stable Li+ and Na+ ion cyclability (>2 Li+/Na+ per formula unit) for widely varying current densities over few hundreds to thousands of successive cycles. The simultaneous intercalation and alloying storage mechanisms is also studied within the density functional theory (DFT) framework. DFT expectedly shows a very small variation in the volume of Al‐titanium niobate following lithium alloying. Moreover, the theoretical investigations also conclusively support the occurrence of the alloying process of Li ions with the Al ions along with the intercalation process during discharge. The M‐Ti‐niobates studied here demonstrate a paradigm shift in chemical design of electrodes and will pave the way for the development of a multitude of improved electrodes for different battery chemistries.  相似文献   

12.
13.
14.
Recent reports demonstrate that a two‐dimensional (2D) structural characteristic can endow perovskites with both remarkable photoelectric conversion efficiency and high stability, but the synthesis of ultrathin 2D perovskites with large sizes by facile solution methods is still a challenge. Reported herein is the controlled growth of 2D (C4H9NH3)2PbBr4 perovskites by a chlorobenzene‐dimethylformide‐acetonitrile ternary solvent method. The critical factors, including solvent volume ratio, crystallization temperature, and solvent polarity on the growth dynamics were systematically studied. Under optimum reaction condition, 2D (C4H9NH3)2PbBr4 perovskites, with the largest lateral dimension of up to 40 μm and smallest thickness down to a few nanometers, were fabricated. Furthermore, various iodine doped 2D (C4H9NH3)2PbBrx I4−x perovskites were accessed to tune the optical properties rationally.  相似文献   

15.
16.
Well‐controlled nanostructures and a high fraction of Sn/Li2O interface are critical to enhance the coulombic efficiency and cyclic performance of SnO2‐based electrodes for lithium‐ion batteries (LIBs). Polydopamine (PDA)‐coated SnO2 nanocrystals, composed of hundreds of PDA‐coated “corn‐like” SnO2 nanoparticles (diameter ca. 5 nm) decorated along a “cob”, addressed the irreversibility issue of SnO2‐based electrodes. The PDA‐coated SnO2 were crafted by capitalizing on rationally designed bottlebrush‐like hydroxypropyl cellulose‐graft‐poly (acrylic acid) (HPC‐g ‐PAA) as a template and was coated with PDA to construct a passivating solid‐electrolyte interphase (SEI) layer. In combination, the corn‐like nanostructure and the protective PDA coating contributed to a PDA‐coated SnO2 electrode with excellent rate capability, superior long‐term stability over 300 cycles, and high Sn→SnO2 reversibility.  相似文献   

17.
18.
Although two‐dimensional (2D) metal oxide/sulfide hybrid nanostructures have been synthesized, the facile preparation of ultrathin 2D nanosheets in high yield still remains a challenge. Herein, we report the first high‐yield preparation of solution‐processed ultrathin 2D metal oxide/sulfide hybrid nanosheets, that is, Tix Ta1−x Sy Oz (x =0.71, 0.49, and 0.30), from Tix Ta1−x S2 precursors. The nanosheet exhibits strong absorbance in the near‐infrared region, giving a large extinction coefficient of 54.1 L g−1 cm−1 at 808 nm, and a high photothermal conversion efficiency of 39.2 %. After modification with lipoic acid‐conjugated polyethylene glycol, the nanosheet is a suitable photothermal agent for treatment of cancer cells under 808 nm laser irradiation. This work provides a facile and general method for the preparation of 2D metal oxide/sulfide hybrid nanosheets.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号