首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caged neurotransmitters, in combination with focused light beams, enable precise interrogation of neuronal function, even at the level of single synapses. However, most caged transmitters are, surprisingly, severe antagonists of ionotropic gamma ‐aminobutyric acid (GABA) receptors. By conjugation of a large, neutral dendrimer to a caged GABA probe we introduce a “cloaking” technology that effectively reduces such antagonism to very low levels. Such cloaked caged compounds will enable the study of the signaling of the inhibitory neurotransmitter GABA in its natural state using two‐photon uncaging microscopy for the first time.  相似文献   

2.
A new class of coumarin photocaging groups modified with an electron‐rich styryl moiety at the 3‐position was constructed. The large π‐conjugated structure and stabilization of the carbocation intermediates by electron donors endowed the new photocaging groups with excellent long‐wavelength absorption, large two‐photon absorption cross‐sections, and high uncaging quantum yields. Moreover, the new photocaging groups displayed unique photobleaching properties after photocleavage as a result of the intramolecular cyclization rearrangement of a carbocation intermediate to form five‐membered ring byproducts and block the styryl conjugation at the 3‐position. These superior properties of the new photocaging groups are extremely beneficial for high‐concentration samples and thick specimens, thus extending the application of photocaging groups in many fields.  相似文献   

3.
A new class of coumarin photocaging groups modified with an electron‐rich styryl moiety at the 3‐position was constructed. The large π‐conjugated structure and stabilization of the carbocation intermediates by electron donors endowed the new photocaging groups with excellent long‐wavelength absorption, large two‐photon absorption cross‐sections, and high uncaging quantum yields. Moreover, the new photocaging groups displayed unique photobleaching properties after photocleavage as a result of the intramolecular cyclization rearrangement of a carbocation intermediate to form five‐membered ring byproducts and block the styryl conjugation at the 3‐position. These superior properties of the new photocaging groups are extremely beneficial for high‐concentration samples and thick specimens, thus extending the application of photocaging groups in many fields.  相似文献   

4.
Three boron diketonate chromophores with extended π‐conjugated backbone were prepared and their spectroscopic features were investigated through a combined theoretical/experimental study. It was shown that these complexes, which undergo very large electronic reorganization upon photoexcitation, combine large two‐photon absorption cross section with an emission energy and quantum efficiency in solution that is strongly dependent on solvent polarity. The strong positive influence of boron complexation on the magnitude of the two‐photon absorption was clearly established, and it was shown that the two‐photon absorption properties were dominated by the quadrupolar term. For one of the synthesized compounds, intense one‐ and two‐photon‐induced solid‐state emission (fluorescence quantum yield of 0.65 with maximum wavelength of 610 nm) was obtained as a result of antiparallel J‐aggregate crystal packing.  相似文献   

5.
Three two‐photon absorption (TPA) tribranched chromophores were successfully prepared, in which 1,3,5‐triazine is been as electron deficient core, 1,4‐phenylenedivinylene as conjugated bridge, 3,4‐ethylenedioxythiophene (EDOT) ( T1 ), N‐methylpyrrole ( T2 ) or triphenylamine ( T3 ) as electron‐donating end‐groups. Their photophysical properties were studied by absorption, one‐ and two‐photon fluorescence and TPA cross‐section determination. The nonlinear transmission (NLT) measurement in femtoseconds (fs) regime at 800 nm indicates that TPA cross‐section (2 values of T1 , T2 and T3 with extended Π‐conjugated bridge are much larger than the corresponding chromophore T4 with a short length bridge, and TPA cross‐section of T1 with end‐groups EDOT exhibits a remarkable enhancement compared with T2 and T3 having the same length Π‐system. The chromophores T1 , T2 and T3 show also remarkable up‐converted luminescence and optical limiting activity.  相似文献   

6.
A novel series of diphenylamino‐ and 1,2,4‐triazole‐end‐capped, fluorene‐based, π‐conjugated oligomers that includes extended oligofluorenes and oligothienylfluorenes has been synthesized by means of the palladium‐catalyzed Suzuki cross‐coupling of 9,9‐dibutyl‐7‐(diphenylamino)‐2‐fluorenylboronic acid and the corresponding 1,2,4,‐triazole‐based aryl halide as a key step. It was demonstrated that efficient two‐ and three‐photon excited photoluminescence and lasing in the blue region are obtained by pumping near‐infrared femtosecond lasers on these materials. Although the absorption and emission maxima of the highly fluorescent and extended oligofluorenes reach a saturation limit, there exists an effective conjugation length for an optimum three‐photon absorption cross section in the homologous oligofluorene series. On the other hand, the multiphoton excited emission spectrum and lasing wavelength can easily be modified or tuned by an incorporation of thienyl unit(s) into the fluorene‐based π‐conjugated core with which exceptionally large three‐photon absorption cross sections up to 3.59×10?77 cm6 s2 in the femtosecond regime have been obtained, thereby highlighting the potential of this series of photonic materials. The optimized full width at half‐maximum of the cavityless three‐photon upconverted blue lasing spectra are sharply narrowed to approximately 6 nm with an efficiency of up to 0.013 %.  相似文献   

7.
Eleven new, stable, push–pull systems that feature 4,5‐bis[4‐(N,N‐dimethylamino)phenyl]imidazole and 4,5‐dicyanoimidazole as the donor and acceptor moieties and the systematically extended and varied π‐linker were prepared and investigated. Evaluation of the measured UV/Vis spectra, electrochemical data (cyclic voltammetry (CV), rotating‐disc voltammetry (RDV), and polarography) and calculated β and γ polarizabilities showed efficient charge transfer (CT) in biimidazole‐type chromophores. Push–pull system 27 , which features a planar thiophene‐derived π‐linker, was revealed to be the most efficient chromophore within the studied series. This chromophore possessed the most bathochromically shifted CT band, the lowest electrochemical gap, and highest β and γ polarizabilities. The CT transition was most significantly affected by structural features such as π‐linker length, planarity, conjugating arrangement, and the presence of olefinic/acetylenic or 1,4‐phenylene/thiophene subunits in the π‐linker.  相似文献   

8.
Large increases in molecular two‐photon absorption, the onset of measurable molecular three‐photon absorption, and record molecular four‐photon absorption in organic π‐delocalizable frameworks are achieved by incorporation of bis(diphosphine)ruthenium units with alkynyl linkages. The resultant ruthenium alkynyl‐containing dendrimers exhibit strong multiphoton absorption activity through the biological and telecommunications windows in the near‐infrared region. The ligated ruthenium units significantly enhance solubility and introduce fully reversible redox switchability to the optical properties. Increasing the ruthenium content leads to substantial increases in multiphoton absorption properties without any loss of optical transparency. This significant improvement in multiphoton absorption performance by incorporation of the organometallic units into the organic π‐framework is maintained when the relevant parameters are scaled by molecular weights or number of delocalizable π‐electrons. The four‐photon absorption cross‐section of the most metal‐rich dendrimer is an order of magnitude greater than the previous record value.  相似文献   

9.
Fluorescent materials exhibiting two‐photon induction (TPI) are used for nonlinear optics, bioimaging, and phototherapy. Polymerizations of molecular chromophores to form π‐conjugated structures were hindered by the lack of long‐range ordering in the structure and strong π–π stacking between the chromophores. Reported here is the rational design of a benzothiadiazole‐based covalent organic framework (COF) for promoting TPI and obtaining efficient two‐photon induced fluorescence emissions. Characterization and spectroscopic data revealed that the enhancement in TPI performance is attributed to the donor‐π‐acceptor‐π‐donor configuration and regular intervals of the chromophores, the large π‐conjugation domain, and the long‐range order of COF crystals. The crystalline structure of TPI‐COF attenuates the π–π stacking interactions between the layers, and overcomes aggregation‐caused emission quenching of the chromophores for improving near‐infrared two‐photon induced fluorescence imaging.  相似文献   

10.
Three water‐soluble tetracationic quadrupolar chromophores comprising two three‐coordinate boron π‐acceptor groups bridged by thiophene‐containing moieties were synthesised for biological imaging applications. Compound 3 containing the bulkier 5‐(3,5‐Me2C6H2)‐2,2′‐(C4H2S)2‐5′‐(3,5‐Me2C6H2) bridge is stable over a long period of time, exhibits a high fluorescence quantum yield and strong one‐ and two‐photon absorption (TPA), and has a TPA cross section of 268 GM at 800 nm in water. Confocal laser scanning fluorescence microscopy studies in live cells indicated localisation of the chromophore at the mitochondria; moreover, cytotoxicity measurements proved biocompatibility. Thus, chromophore 3 has excellent potential for one‐ and two‐photon‐excited fluorescence imaging of mitochondrial function in cells.  相似文献   

11.
Nitrodibenzofuran (NDBF) has recently been established as photolabile protecting group and efficiently used as two‐photon active cage. In this work, a computational approach is exploited to rationally design improved two‐photon active caging groups based on this NDBF chromophore. For this objective, first the two‐photon absorption (TPA) properties of NDBF are investigated in detail and a suitable theoretical approach for the reliable simulation of TPA spectra of this class of compounds is identified. Then, virtual chemical modifications are performed by introduction of substituents at the chromophore and replacement of the central furan ring by pyrolle, thiophene, and borrole heterocycles. Subsequently, the TPA properties of the resulting compounds are computed, and the influences of the chemical modifications on TPA properties investigated in detail. The most promising candidates with largely increased two‐photon uncaging efficiencies are dimethylamino‐substituted derivatives of NDBF, nitrodibenzopyrrol, and nitrodibenzothiophene. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
We successfully introduced two‐photon‐sensitive photolabile groups ([7‐(diethylamino)coumarin‐4‐yl]methyl and p‐dialkylaminonitrobiphenyl) into DNA strands and demonstrated their suitability for three‐dimensional photorelease. To visualize the uncaging, we used a fluorescence readout based on double‐strand displacement in a hydrogel and in neurons. Orthogonal two‐photon uncaging of the two cages is possible, thus enabling complex scenarios of three‐dimensional control of hybridization with light.  相似文献   

13.
Three new donor–π–donor (D‐π‐D) tetrathienoacene (thieno[2′,3′:4,5]thieno[3,2‐b]thieno[2,3‐d]thiophene (TTA))‐cored chromophores, end‐functionalized with electron‐donating triphenylamine (TPA) groups, were developed and characterized for their two‐photon‐related properties by using both nano‐ and femtosecond laser pulses as the probing tools. TTA‐based chromophores exhibit stronger and more widely dispersed two‐photon absorption (2PA) than those of dithienothiophene (DTT)‐based congeners. As a consequence, the bithiophene‐conjugated TTA chromophore exhibits the highest maximum 2PA cross‐section value (up to 2500 GM) with good thermal stability, and thus, it is the best performing two‐photon chromophore among the studied model compounds. The bithiophene‐conjugated DTT analogue exhibits the second highest maximum two‐photon absorptivity of 1950 GM, which is nearly 7 times larger than that of previously reported DTT‐based chromophores.  相似文献   

14.
Upon photon absorption, π‐conjugated organics are apt to undergo ultrafast structural reorganization via electron‐vibrational coupling during non‐adiabatic transitions. Ultrafast nuclear motions modulate local planarity and quinoid/benzenoid characters within conjugated backbones, which control primary events in the excited states, such as localization, energy transfer, and so on. Femtosecond broadband fluorescence upconversion measurements were conducted to investigate exciton self‐trapping and delocalization in cycloparaphenylenes as ultrafast structural reorganizations are achieved via excited‐state symmetry‐dependent electron‐vibrational coupling. By accessing two high‐lying excited states, one‐photon and two‐photon allowed states, a clear discrepancy in the initial time‐resolved fluorescence spectra and the temporal dynamics/spectral evolution of fluorescence spectra were monitored. Combined with quantum chemical calculations, a novel insight into the effect of the excited‐state symmetry on ultrafast structural reorganization and exciton self‐trapping in the emerging class of π‐conjugated materials is provided.  相似文献   

15.
Structurally unique π‐expanded diketopyrrolopyrroles (EDPP) were designed and synthesized. Strategic placement of a fluorene scaffold at the periphery of a diketopyrrolopyrrole through tandem Friedel–Crafts‐dehydration reactions resulted in dyes with supreme solubility. The structure of the dyes was confirmed by X‐ray crystallography verifying a nearly flattened arrangement of the ten fused rings. Despite the extended ring system, the dye still preserved good solubility and was further functionalized by using Pd‐catalyzed coupling reactions, such as the Buchwald–Hartwig amination. Photophysical studies of these new functional dyes revealed that they possess enhanced properties when compared with expanded DPPs in terms of two‐photon absorption cross‐section. It is further demonstrated that in addition to the initial diacetals, the final electrophilic cyclization step can also be applied to diketones. By placing two amine groups at peripheral positions of the resulting dyes, values of two‐photon absorption cross‐section on the level of 2000 GM around 1000 nm were achieved, which in combination with high fluorescence quantum yield (Φfl), generated a two‐photon brightness of approximately 1600 GM. These characteristics in combination with strong red emission (665 nm) make these new π‐expanded diketopyrrolopyrroles of major promise as two‐photon dyes for bioimaging applications. Finally, the corresponding N‐alkylated DPPs displayed a solid‐state fluorescence.  相似文献   

16.
A series of π‐aryl/heteroaryl conjugated coumarin‐thiazole systems 8a‐f has been synthesized by using Hantzsch thiazole protocol and Wittig olefination as the keys. In the UV‐Visible spectra of 8a‐f , a main absorption band associated with a dominant π‐π* transition is observed in the region of 338 to 390 nm. Qualitatively, the values of λmax have been found to correlate satisfactory with the donor/acceptor characteristics of the π‐attached chromophores. Marked changes observed in the absorption maxima of 8a under acidic conditions are rationalized on the basis of mono‐or bis‐protonation and modification of the donor/acceptor properties of chromophores undergoing protonation. The emission spectra of 8a‐f , obtained by exciting the molecules at their main absorption bands showed emission maxima in the region of 429 nm to 537 nm, with relatively high Stokes shifts of 145 and 171 nm being observed for 8a and 8e , carrying a π‐donor, dimethylaminophenyl and a π‐acceptor, p‐nitrophenyl chromophore, respectively. Although, the first hyperpolarisability β, measured by the hyper‐Reileigh scattering (HRS) technique are modest (12 to 23 × 10?30 esu), all the compounds exhibited complete transparency in the frequency doubling region at 532 nm and showed high thermal stability (Td from 330 to 365 °C).  相似文献   

17.
Naphthalene diimides have received much attention due to their high electron affinities, high electron mobility, and good thermal and oxidative stability, therefore making them promising candidates for a variety of organic electronic applications. However, π‐extended naphthalene diimides with lower HOMO‐LUMO gaps and higher stability have only been developed recently because of the synthetic difficulties. This account describes recent developments in the structures, synthesis, properties, and applications of π‐extended naphthalene diimides, including pure‐carbon and heterocyclic acene diimides, from our research group.  相似文献   

18.
The synthesis of highly efficient two‐photon uncaging groups and their potential use in functional conjugated polymers for post‐polymerization modification are reported. Careful structural design of the employed nitrophenethyl caging groups allows to efficiently induce bond scission by a two‐photon process through a combination of exceptionally high two‐photon absorption cross‐sections and high reaction quantum yields. Furthermore, π‐conjugated polyfluorenes are functionalized with these photocleavable side groups and it is possible to alter their emission properties and solubility behavior by simple light irradiation. Cleavage of side groups leads to a turn‐on of the fluorescence while solubility of the π‐conjugated materials is drastically reduced.

  相似文献   


19.
Two bioluminogenic caged coelenterazine derivatives (bGalCoel and bGalNoCoel) were designed and synthesized to detect β‐galactosidase activity and expression by means of bioluminescence imaging. Our approach addresses the instability of coelenterazine by introducing β‐galactose caging groups to block the auto‐oxidation of coelenterazine. Both probes contain β‐galactosidase cleavable caging groups at the carbonyl group of the imidazo–pyrazinone moiety. One of the probes in particular, bGalNoCoel, displayed a fast cleavage profile, high stability, and high specificity for β‐galactosidase over other glycoside hydrolases. bGalN‐oCoel could detect β‐galactosidase activity in living HEK‐293T cell cultures that expressed a mutant Gaussia luciferase. It was determined that coelenterazine readily diffuses in and out of cells after uncaging by β‐galactosidase. We showed that this new caged coelenterazine derivative, bGalNoCoel, could function as a dual‐enzyme substrate and detect enzyme activity across two separate cell populations.  相似文献   

20.
We present a new approach for determining the strength of the dipolar solute‐induced reaction field, along with the ground‐ and excited‐state electrostatic dipole moments and polarizability of a solvated chromophore, using exclusively one‐photon and two‐photon absorption measurements. We verify the approach on two benchmark chromophores N,N‐dimethyl‐6‐propionyl‐2‐naphthylamine (prodan) and coumarin 153 (C153) in a series of toluene/dimethyl sulfoxide (DMSO) mixtures and find that the experimental values show good quantitative agreement with literature and our quantum‐chemical calculations. Our results indicate that the reaction field varies in a surprisingly broad range, 0–107 V cm?1, and that at close proximity, on the order of the chromophore radius, the effective dielectric constant of the solute–solvent system displays a unique functional dependence on the bulk dielectric constant, offering new insight into the close‐range molecular interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号