首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activatable theranostic systems show potential for improved tumor diagnosis and therapy owing to high detection specificities, effective ablation, and minimal side‐effects. Herein, a tumor microenvironment (TME)‐activated NIR‐II nanotheranostic system (FEAD1) for precise diagnosis and treatment of peritoneal metastases is presented. FEAD1 was fabricated by self‐assembling the peptide Fmoc‐His, mercaptopropionic‐functionalized Ag2S quantum dots (MPA‐Ag2S QDs), the chemodrug doxorubicin (DOX), and NIR absorber A1094 into nanoparticles. We show that in healthy tissue, FEAD1 exists in an NIR‐II fluorescence “off” state, because of Ag2S QDs‐A1094 interactions, while DOX remains in stealth mode. Upon delivery of FEAD1 to the tumor, the acidic TME triggers its disassembly through breakage of the Fmoc‐His metal coordination and DOX hydrophobic interactions. Release of A1094 switches on Ag2S fluorescence, illuminating the tumor, accompanied by burst release of DOX within the tumor tissue, thereby achieving precise tumor theranostics. This TME‐activated theranostic strategy holds great promise for future clinical applications.  相似文献   

2.
Traumatic brain injury (TBI) is one of the most dangerous acute diseases resulting in high morbidity and mortality. Current methods remain limited with respect to early diagnosis and real‐time feedback on the pathological process. Herein, a targeted activatable fluorescent nanoprobe (V&A@Ag2S) in the second near‐infrared window (NIR‐II) is presented for in vivo optical imaging of TBI. Initially, the fluorescence of V&A@Ag2S is turned off owing to energy transfer from Ag2S to the A1094 chromophore. Upon intravenous injection, V&A@Ag2S quickly accumulates in the inflamed vascular endothelium of TBI based on VCAM1‐mediated endocytosis, after which the nanoprobe achieves rapid recovery of the NIR‐II fluorescence of Ag2S quantum dots (QDs) owing to the bleaching of A1094 by the prodromal biomarker of TBI, peroxynitrite (ONOO?). The nanoprobe offers high specificity, rapid response, and high sensitivity toward ONOO?, providing a convenient approach for in vivo early real‐time assessment of TBI.  相似文献   

3.
Ag2Se quantum dots (QDs) with near‐infrared (NIR) fluorescence have been widely utilized in NIR fluorescence imaging in vivo because of their narrow bulk band gap and excellent biocompatibility. However, most of synthesis methods for Ag2Se QDs are expensive and the reactants are toxic. Herein, a new protein‐templated biomimetic synthesis approach is proposed for the preparation of Ag2Se QDs by employing bovine serum albumin (BSA) as a template and dispersant. The BSA‐templated Ag2Se QDs (Ag2Se@BSA QDs) showed NIR fluorescence with high fluorescence quantum yield (≈21.2 %), excellent biocompatibility and good dispersibility in different media. Moreover, the obtained Ag2Se@BSA QDs exhibited remarkable photothermal conversion (≈27.8 %), which could be used in photothermal therapy. As a model application in biomedicine, the Ag2Se@BSA QDs were used as “gatekeepers” to cap mesoporous silica nanoparticles (MSNs) by means of electrostatic interaction. By taking the advantages of NIR fluorescence and photothermal property of Ag2Se@BSA QDs, the obtained MSN‐DOX‐Ag2Se nanoparticles (MDA NPs) were employed as a nanoplatform for combined chemo‐photothermal therapy. Compared with free DOX and MDA NPs without NIR laser, the laser‐treated MDA NPs exhibited lower cell viability in vitro, implying that Ag2Se@BSA QDs are highly promising photothermal agents and the MDA NPs are potential carriers for chemo–photothermal therapy.  相似文献   

4.
NIR light responsive nanoplatforms hold great promise for on‐demand drug release in precision cancer medicine. However, currently available systems utilize “always‐on” photothermal transducers that lack target specificity, and thus inaccurately differentiate tumors from normal tissues. Developed here is a theranostic nanoplatform featuring H2S‐mediated in situ production of NIR photothermal agents for imaging‐guided and photocontrolled drug release. The system targets H2S‐rich cancers. This nanoplatform shows H2S‐activatable NIR‐II emission and NIR light controllable release of the drug Camptothecin‐11. Upon administering the system to HCT116 tumor‐bearing mice, the tumor is greatly suppressed with minimal side effects, arising from the synergy of the cancer‐specific and NIR light activated therapy. This theranostic nanoplatform thus sheds light on precision medicine with guidance through NIR‐II imaging.  相似文献   

5.
Pathogenic microorganisms in the environment are a great threat to global human health. The development of disinfection method with rapid and effective antibacterial properties is urgently needed. In this study, a biomimetic silver binding peptide AgBP2 was introduced to develop a facile synthesis of biocompatible Ag2S quantum dots (QDs). The AgBP2 capped Ag2S QDs exhibited excellent fluorescent emission in the second near-infrared (NIR-II) window, with physical stability and photostability in the aqueous phase. Under 808 nm NIR laser irradiation, AgBP2-Ag2S QDs can serve not only as a photothermal agent to realize NIR photothermal conversion but also as a photocatalyst to generate reactive oxygen species (ROS). The obtained AgBP2-Ag2S QDs achieved a highly effective disinfection efficacy of 99.06 % against Escherichia coli within 25 min of NIR irradiation, which was ascribed to the synergistic effects of photogenerated ROS during photocatalysis and hyperthermia. Our work demonstrated a promising strategy for efficient bacterial disinfection.  相似文献   

6.
Fluorescent probes in the second near‐infrared window (NIR‐II) allow high‐resolution bioimaging with deep‐tissue penetration. However, existing NIR‐II materials often have poor signal‐to‐background ratios because of the lack of target specificity. Herein, an activatable NIR‐II nanoprobe for visualizing colorectal cancers was devised. This designed probe displays H2S‐activated ratiometric fluorescence and light‐up NIR‐II emission at 900–1300 nm. By using this activatable and target specific probe for deep‐tissue imaging of H2S‐rich colon cancer cells, accurate identification of colorectal tumors in animal models were performed. It is anticipated that the development of activatable NIR‐II probes will find widespread applications in biological and clinical systems.  相似文献   

7.
A one‐step method was developed for preparing Ag2S quantum dots (QDs) using a common protein [bovine serum albumin (BSA)] to entrap QDs precursors (BSA–Ag+). Fluorescence (FL) and ultraviolet spectra showed that the molar ratio of Ag+/BSA, temperature, and pH are the crucial factors for the quality of QDs. The QDs absorption wavelength and emission wavelength were about 340 and 450 nm. The average QDs particle size was estimated to be less than 5 nm, determined by transmission electron microscopy. The X‐ray power diffraction and XPS results showed that the synthesized product was indeed monoclinic Ag2S. With Fourier transform infrared spectra and thermogravimetry analysis, there might be conjugated bonds between Ag2S QDs and –OH, –NH, and –SH groups in BSA. In addition, FL spectra suggest that the designed QDs can produce static quenching with BSA and the Stern–Volmer quenching constant (Ksv) was calculated as 2.145 × 104. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Activatable theranostic systems show potential for improved tumor diagnosis and therapy owing to high detection specificities, effective ablation, and minimal side-effects. Herein, a tumor microenvironment (TME)-activated NIR-II nanotheranostic system (FEAD1) for precise diagnosis and treatment of peritoneal metastases is presented. FEAD1 was fabricated by self-assembling the peptide Fmoc-His, mercaptopropionic-functionalized Ag2S quantum dots (MPA-Ag2S QDs), the chemodrug doxorubicin (DOX), and NIR absorber A1094 into nanoparticles. We show that in healthy tissue, FEAD1 exists in an NIR-II fluorescence “off” state, because of Ag2S QDs-A1094 interactions, while DOX remains in stealth mode. Upon delivery of FEAD1 to the tumor, the acidic TME triggers its disassembly through breakage of the Fmoc-His metal coordination and DOX hydrophobic interactions. Release of A1094 switches on Ag2S fluorescence, illuminating the tumor, accompanied by burst release of DOX within the tumor tissue, thereby achieving precise tumor theranostics. This TME-activated theranostic strategy holds great promise for future clinical applications.  相似文献   

9.
The (3R,5S,6E,8S,10R)‐11‐amino‐3,5,8,10‐tetramethylundec‐6‐enoic acid (ATUA; 1 ), which was designed as a βII′‐turn mimic according to the concepts of allylic strain and 2,4‐dimethylpentane units, was incorporated into a cyclic RGD peptide. The three‐dimensional structure of cyclo(‐RGD‐ATUA‐) (=cyclo(‐Arg‐Gly‐Asp‐ATUA‐)) 4 in H2O was determined by NMR techniques, distance geometry calculations and molecular‐dynamics simulations. The RGD sequence of 4 shows high conformational flexibility but some preference for an extended conformation. The structural features of the RGD sequence of 4 were compared with the RGD moiety of cyclo(‐RGDfV‐) (=cyclo(‐Arg‐Gly‐Asp‐D ‐Phe‐Val‐)). In contrast to cyclo(‐RGDfV‐), which is a highly active αvβ3 antagonist and selective against αIIbβ3, cyclo(‐RGD‐ATUA‐) shows a lower activity and selectivity. The structure of the ATUA residue in the cyclic peptide resembles a βII′‐turn‐like conformation. Its middle part, adjacent to the C?C bond, strongly prefers the designed and desired structure.  相似文献   

10.
Hypoxia, as a characteristic feature of solid tumor, can significantly adversely affect the outcomes of cancer radiotherapy (RT), photodynamic therapy, or chemotherapy. In this study, a strategy is developed to overcome tumor hypoxia‐induced radiotherapy tolerance. Specifically, a novel two‐dimensional Pd@Au bimetallic core–shell nanostructure (TPAN) was employed for the sustainable and robust production of O2 in long‐term via the catalysis of endogenous H2O2. Notably, the catalytic activity of TPAN could be enhanced via surface plasmon resonance (SPR) effect triggered by NIR‐II laser irradiation, to enhance the O2 production and thereby relieve tumor hypoxia. Thus, TPAN could enhance radiotherapy outcomes by three aspects: 1) NIR‐II laser triggered SPR enhanced the catalysis of TPAN to produce O2 for relieving tumor hypoxia; 2) high‐Z element effect arising from Au and Pd to capture X‐ray energy within the tumor; and 3) TPAN affording X‐ray, photoacoustic, and NIR‐II laser derived photothermal imaging, for precisely guiding cancer therapy, so as to reduce the side effects from irradiation.  相似文献   

11.
A simple, cheap, sensitive and selective probe for determination of DNPH in wastewater using thioglycolic acid (TGA)‐coated CdTe QDs (TGA‐QDs) as fluorescence probe has been established, and the properties of CdTe QDs were characterized by TEM, FT‐IR, DLS, XRD and zeta potentials. CdTe QDs fluorescence is highly efficiently quenched after adding DNPH on account of electron transfer effect, and the fluorescence quenching behavior of CdTe QDs interaction with DNPH is static quenching process. A good linear relationship is observed between the relative fluorescence intensity (F0/F) and 0.06–10 ng mL?1 of DNPH. As compared with some of reported methods, LOD of this method for analysis of DNPH (0.23 ng mL?1) is the lowest. Masking agents of DDTC and NH4OH can eliminate the interference of Cu2+, Ag+ and Hg2+. Hence, DNPH can be selectively and accurately detected and the established method was successfully used for detecting DNPH in wastewater with acceptable recovery of 90.6–102%.  相似文献   

12.
To overcome the current limitations of chemodynamic therapy (CDT), a Mo2C‐derived polyoxometalate (POM) is readily synthesized as a new CDT agent. It permits synergistic chemodynamic and photothermal therapy operating in the second near‐infrared (NIR‐II) biological transparent window for deep tissue penetration. POM aggregated in an acidic tumor micro‐environment (TME) whereby enables specific tumor targeting. In addition to the strong ability to produce singlet oxygen (1O2) presumably via Russell mechanism, its excellent photothermal conversion enhances the CDT effect, offers additional tumor ablation modality, and permits NIR‐II photoacoustic imaging. Benefitting from the reversible redox property of molybdenum, the theranostics based on POM can escape from the antioxidant defense system. Moreover, combining the specific responsiveness to TME and localized laser irradiation, side‐effects shall be largely avoided.  相似文献   

13.
Despite the bright and tuneable photoluminescence (PL) of semiconductor quantum dots (QDs), the PL instability induced by Auger recombination and oxidation poses a major challenge in single‐molecule applications of QDs. The incomplete information about Auger recombination and oxidation is an obstacle in the resolution of this challenge. Here, we report for the first time that Auger‐ionized QDs beat self‐sensitized oxidation and the non‐digitized PL intensity loss. Although high‐intensity photoactivation insistently induces PL blinking, the transient escape of QDs into the ultrafast Auger recombination cycle prevents generation of singlet oxygen (1O2) and preserves the PL intensity. By the detection of the NIR phosphorescence of 1O2 and evaluation of the photostability of single QDs in aerobic, anaerobic, and 1O2 scavenger‐enriched environments, we disclose relations of Auger ionization and 1O2‐mediated oxidation to the PL stability of single QDs, which will be useful during the formulation of QD‐based single‐molecule imaging tools and single‐photon devices.  相似文献   

14.
Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self‐assembly process capable of producing highly uniform and solution‐processable nanomaterials with tailor‐made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag+ soldering and dry thermal sintering to produce nanodimer‐derived structures with precisely engineered charge‐transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA‐linked AuNP dimers toward plasmonic meta‐materials via DNA‐guided soldering and sintering.  相似文献   

15.
Photoinduced syntheses offer significant advantages over conventional thermal strategies, including improved control over reaction kinetics and low synthesis temperatures, affording nanoparticles with nontrivial and thermodynamically unstable structures. However, the photoinduced syntheses of non‐metallic nanocrystalline products (such as metal sulfides) have not yet been reported. Herein, we demonstrate the first photoinduced synthesis of ultrafine (sub‐2 nm) Ag2S quantum dots (QDs) from Ag nanoparticles at 10 °C. By thorough investigation of the mechanism for the transformation, a fundamental link was established between the intrinsic structures of the molecular intermediates and the final Ag2S products. Our results confirm the viability of low‐temperature photochemical approaches in metal sulfide synthesis, and demonstrate a new rule which could be followed in it.  相似文献   

16.
Peptide macrocyclization is often a slow process, plagued by epimerization and cyclodimerization. Herein, we describe a new method for peptide macrocyclization employing the AgI‐promoted transformation of peptide thioamides. The AgI has a dual function: chemoselectively activating the thioamide and tethering the N‐terminal thioamide to the C‐terminal carboxylate. Extrusion of Ag2S generates an isoimide intermediate, which undergoes acyl transfer to generate the native cyclic peptide, resulting in a rapid, traceless macrocylization process. Cyclic peptides are furnished in high yields within 1 hour, free of epimerization and cyclodimerization.  相似文献   

17.
Peptide macrocyclization is often a slow process, plagued by epimerization and cyclodimerization. Herein, we describe a new method for peptide macrocyclization employing the AgI‐promoted transformation of peptide thioamides. The AgI has a dual function: chemoselectively activating the thioamide and tethering the N‐terminal thioamide to the C‐terminal carboxylate. Extrusion of Ag2S generates an isoimide intermediate, which undergoes acyl transfer to generate the native cyclic peptide, resulting in a rapid, traceless macrocylization process. Cyclic peptides are furnished in high yields within 1 hour, free of epimerization and cyclodimerization.  相似文献   

18.
Near‐infrared (NIR) fluorescent dyes with favorable photophysical properties are highly useful for bioimaging, but such dyes are still rare. The development of a unique class of NIR dyes via modifying the rhodol scaffold with fused tetrahydroquinoxaline rings is described. These new dyes showed large Stokes shifts (>110 nm). Among them, WR3, WR4, WR5, and WR6 displayed high fluorescence quantum yields and excellent photostability in aqueous solutions. Moreover, their fluorescence properties were tunable by easy modifications on the phenolic hydroxy group. Based on WR6, two NIR fluorescent turn‐on probes, WSP‐NIR and SeSP‐NIR, were devised for the detection of H2S. The probe SeSP‐NIR was applied in visualizing intracellular H2S. These dyes are expected to be useful fluorophore scaffolds in the development of new NIR probes for bioimaging.  相似文献   

19.
In this work, we develop a low‐temperature, facile solution reaction route for the fabrication of quantum‐dot‐sensitized solar cells (QDSSCs) containing Ag2S‐ZnO nanowires (NWs), simultaneously ensuring low manufacturing costs and environmental safety. For comparison, a CdS‐ZnO NW photoanode was also prepared using the layer‐by‐layer growth method. Ultraviolet photoelectron spectroscopy analysis revealed type‐II band alignments for the band structures of both photoanodes which facilitate electron transfer/collection. Compared to CdS‐ZnO QDSSCs, Ag2S‐ZnO QDSSCs exhibit a considerably higher short‐circuit current density (Jsc) and a strongly enhanced light‐harvesting efficiency, but lower open‐circuit voltages (Voc), resulting in almost the same power‐conversion efficiency of 1.2 %. Through this work, we demonstrate Ag2S as an efficient quantum‐dot‐sensitizing material that has the potential to replace Cd‐based sensitizers for eco‐friendly applications.  相似文献   

20.
Herein, we designed four peptides appended with different numbers of histidine (Hisn‐peptide). We launched a systematic investigation on quantum dots (QDs) and Hisn‐peptide self‐assembly in solution using fluorescence coupled CE (CE‐FL). The results indicated that CE‐FL was a powerful method to probe how ligands interaction on the surface of nanoparticles. The self‐assembly of QDs and peptide was determined by the numbers of histidine. We also observed that longer polyhistidine tags (n ≤ 6) could improve the self‐assembly efficiency. Furthermore, the formation and separation of QD‐peptide assembly were also studied by CE‐FL inside a capillary. The total time for the mixing, self‐assembly, separation, and detection was less than 10 min. Our method greatly expands the application of CE‐FL in QDs‐based biolabeling and bioanalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号