首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel supramolecular vesicles based on host–guest systems were coassembled from carboxylate‐substituted pillar[6]arene (CPA[6]) and disulfide‐linked benzimidazolium amphiphiles, and the microstructures of the CPA‐based supramolecular vesicles were clearly elaborated. The supramolecular vesicles showed controlled drug release in response to five stimuli, with glutathione, pH, CO2, Zn2+ ions, and hexanediamine, leading to cleavage of the disulfide bonds, protonation of the carboxylate groups, metal chelation, and competitive binding. This is the first case of a smart pillararene‐based supramolecular vesicle being integrated with five stimuli‐responsive functions to meet the diverse requirements of controlled drug release. Importantly, each of the five stimuli is closely related to microenvironments of tumors and diseases of the human body. The smart stimuli‐responsive supramolecular vesicles have promising applications in drug therapy of tumors and relevant diseases.  相似文献   

2.
Macrocycles are an important player in supramolecular chemistry. In 2008, a new class of macrocycles, “pillar[n]arenes”, were first discovered. Research efforts in the area of pillar[n]arenes have elucidated key properties, such as their shape, reaction mechanism, host–guest properties, and their versatile functionality, which has contributed to the development of pillar[n]arene chemistry and their applications to various fields. This Minireview describes how pillar[n]arene‐based supramolecular assemblies can be applied to supramolecular gel formation, reactions, light‐harvesting systems, drug‐delivery systems, biochemical applications, separation and storage materials, and surface chemistry.  相似文献   

3.
Supramolecular polymers are a class of macromolecules stabilized by weak non‐covalent interactions. These self‐assembled aggregates typically undergo stimuli‐induced reversible assembly and disassembly. They thus hold great promise as so‐called functional materials. In this work, we present the design, synthesis, and responsive behavior of a short supramolecular oligomeric system based on two hetero‐complementary subunits. These “monomers” consist of a tetrathiafulvalene‐functionalized calix[4]pyrrole (TTF‐C[4]P) and a glycol diester‐linked bis‐2,5,7‐trinitrodicyanomethylenefluorene‐4‐carboxylate (TNDCF), respectively. We show that when mixed in organic solvents, such as CHCl3, CH2ClCH2Cl, and methylcyclohexane, supramolecular aggregation takes place to produce short oligomers stabilized by hydrogen bonding and donor–acceptor charge‐transfer (CT) interactions. The self‐associated materials were characterized by 1H NMR and UV/Vis/NIR absorption spectroscopy, as well as by concentration‐ and temperature‐dependent absorption spectroscopy and dynamic light scattering (DLS) analyses of both the monomeric and oligomerized species. The self‐associated system produced from TTF‐C[4]P and TNDCF exhibits a concentration‐dependent aggregation behavior typical of supramolecular polymers. Further support for the proposed self‐assembly came from theoretical calculations. The fluorescence emitting properties of TNDCF are quenched under conditions that promote the formation of supramolecular aggregates containing TTF‐C[4]P and TNDCF. This quenching effect has been utilized as a probe for the detection of substrates in the form of anions (i.e., chloride) and nitroaromatic explosives (i.e., 1,3,5‐trinitrobenzene). Specifically, the addition of these substrates to mixtures of TTF‐C[4]P and TNDCF produced a fluorescence “turn‐on” response.  相似文献   

4.
Supramolecular copolymers can not only enrich the diversity of the polymer backbone but also exhibit certain special and improved properties compared with supramolecular homopolymers. However, the synthesis procedure of supramolecular copolymers is relatively complicated and time‐consuming. Herein, a simple transformation from an AB2‐based supramolecular hyperbranched homopolymer to an AB2+CD2‐based supramolecular hyperbranched alternating copolymer by the “competitive self‐sorting” strategy is reported. After adding CD2 monomer, which bears a competitive neutral guest moiety ( TAPN ) and two receptive benzo‐21‐crown‐7 host moieties ( B21C7 ), to the as‐prepared AB2‐type supramolecular hyperbranched homopolymer constructed by the self‐assembly of dialkylammonium salt ( DAAS , A group)‐functionalized pillar[5]arene ( MeP5 , B groups) monomers, the initial homopolymer structure is disrupted and then reassemble into a new supramolecular hyperbranched alternating copolymer based on the competitive self‐sorting interaction between MeP5 ‐ TAPN and B21C7 ‐ DAAS . This study supplies a convenient approach to directly transform supramolecular homopolymers into supramolecular copolymers.

  相似文献   


5.
Two novel types of supramolecular nanocarriers fabricated by the amphiphilic host–guest inclusion complex formed from water‐soluble pillar[6]arene ( WP6 ) and azobenzene derivatives G1 or G2 have been developed, in which G1 is structurally similar to G2 but has an extra phenoxy group in its hydrophobic region. Supramolecular micelles can be initially formed by WP6 with G1 , which gradually transform into layered structures with liquid‐crystalline properties, whereas stable supramolecular vesicles are obtained from WP6 and G2 , which exhibit dual photo‐ and pH‐responsiveness. Notably, the resulting WP6 ? G2 vesicles can efficiently encapsulate anticancer drug mitoxantrone (MTZ) to achieve MTZ‐loaded vesicles, which maintain good stability in a simulated normal physiological environment, whereas in an acid environment similar to that of tumor cells or with external UV irradiation, the encapsulated drug is promptly released. More importantly, cytotoxicity assay indicates that such vesicles have good biocompatibility and the MTZ‐loaded vesicles exhibit comparable anticancer activity to free MTZ, especially with additional UV stimulus, whereas its cytotoxicity for normal cells was remarkably reduced. Flow cytometric analysis further confirms that the cancer cell death caused by MTZ‐loaded vesicles is associated with apoptosis. Therefore, the dual pH‐ and UV‐responsive supramolecular vesicles are a potential platform for controlled release and targeted anticancer drug delivery.  相似文献   

6.
Water‐soluble 2,6‐helic[6]arene was used to construct supramolecular vesicles via host‐guest interaction. Water‐soluble 2,6‐helic[6]arene was discovered to be high affinity host for suitable biomarkers. Supramolecular vesicles were responsive to multiple stimuli types, including temperature, pH, Ca2+, CO2 bubbling and biomarker displacement. Supramolecular vesicles were used to load and deliver anti‐ tumor drug doxorubicin to HeLa cells in vitro.  相似文献   

7.
Supramolecular systems in water are of paramount importance and those based on hydrogen bonds are both intriguing and scarce. Here, after studying the peculiar host–guest complexes formed between per-dimethylamino-pillar[5]arene ( 1 ) and the bis-sulfonates 2 a – c , we describe the formation of the first hydrogen-bond-based supramolecular pentagonal boxes (SPBs), which are stable in water. These pH-responsive SPBs are constructed from 1 as a body, benzene polycarboxylic acids 3 a , b as lid compounds, and 2 a – c as guests. We demonstrate that encapsulation of 2 a – c in pillar[5]arene 1 and in the highly stable water-soluble SPBs, that is, 1(3 a) 2 and 1(3 b) 2, is both temperature and pH dependent and, quite interestingly, depends, on the nature of the lid compounds used for capping the boxes even at high pH. We also highlight the difference in the 1H NMR characteristics of 2 b and 2 c in the cavity of 1 and the SPBs.  相似文献   

8.
A pillar[5]arene pendant polymer (Poly‐P[5]A) is synthesized via ROMP using Grubb's first‐generation catalyst. GPC analysis of the polymer suggested ~30 pendant pillar[5]arene units in the polymer. Supramolecular polypseudorotaxane assembly is constructed by intermolecularly crosslinking pendant pillar[5]arene units using a bispyridinium guest via host–guest complexation. Formation of the polypseudorotaxane assembly is characterized by 1D/2D NMR techniques and DLS analysis. Moreover, anion‐responsiveness of the polypseudorotaxane assembly is demonstrated by 1H NMR spectroscopic analysis using chloride anion as external stimulus. Scanning electron microscopic analysis of the poly‐P[5]A showed breath‐figure assembly and upon crosslinking with G.2PF6 the polymer self‐assemble to give a supramolecular polymer network. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1508–1515  相似文献   

9.
A chiral electrochemically responsive molecular universal joint (EMUJ) was synthesized by fusing a macrocyclic pillar[6]arene (P[6]) to a ferrocene‐based side ring. A single crystal of an enantiopure EMUJ was successfully obtained, which allowed, for the first time, the definitive correlation between the absolute configuration and the circular dichroism spectrum of a P[6] derivative to be determined. The self‐inclusion and self‐exclusion conformational change of the EMUJ led to a chiroptical inversion of the P[6] moiety, which could be manipulated by both solvents and changes in temperature. The EMUJ also displayed a unique redox‐triggered reversible in/out conformational switching, corresponding to an occupation/voidance switching of the P[6] cavity, respectively. This phenomenon is an unprecedented electrochemical manipulation of the capture and release of guest molecules by supramolecular hosts.  相似文献   

10.
2‐Arylidene‐1,3‐indanediones undergo a regioselective 1,3‐dipolar cycloaddition reaction with the azomethine ylide derived from isatin and sarcosine by decarboxylative route affording a series of 1‐N‐methyl — spiro[2.3′“]oxindole‐spiro[3.2”]indane‐1“,3”‐diones‐4‐aryl pyrrolidines. The structures were established by spectroscopic techniques as well as single crystal X‐ray analysis. Density functional theory at B3L YP/6‐31G* and the semi empirical AM1 calculations were employed to rationalize the observed results. The experimental regioselectivity of 1,3‐dipolar cycloadditions could be corroborated nicely with the computed Fukui frontier orbital energies and reaction energies.  相似文献   

11.
12.
As the host possessing the largest cavity in the cucurbit[n]uril (CB[n]) family, CB[10] has previously displayed unusual recognition and assembly properties with guests but much remains to be explored. Herein, we present the recognition properties of CB[10] toward a series of bipyridinium guests including the tetracationic cyclophane known as blue box along with electron‐rich guests and detail the influence of encapsulation on the charge‐transfer interactions between guests. For the mono‐bipyridinium guest (methylviologen, MV 2+), CB[10] not only forms 1:1 and 1:2 inclusion complexes, but also enhances the charge‐transfer interactions between methylviologen and dihydroxynaphthalene ( HN ) by mainly forming the 1:2:1 packed “sandwich” complex (CB[10] ? 2 MV 2+ ?HN ). For guest 1 with two bipyridinium units, an interesting conformational switching from linear to “U” shape is observed by adding catechol to the solution of CB[10] and the guest. For the tetracationic cyclophane‐blue box, CB[10] forms a stable 1:1 inclusion complex; the two bipyridinium units tilt inside the cavity of CB[10] according to the X‐ray crystal structure. Finally, a supramolecular “Russian doll” was built up by threading a guest through the cavities of both blue box and CB[10].  相似文献   

13.
A new tetrazole–metal supramolecular compound, di‐μ‐chlorido‐bis(trichlorido{1‐[(1H‐tetrazol‐5‐yl‐κN2)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane}cadmium(II)), [Cd2(C8H16N6)2Cl8], has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. In the structure, each CdII cation is coordinated by five Cl atoms (two bridging and three terminal) and by one N atom from the 1‐[(1H‐tetrazol‐5‐yl)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane ligand, adopting a slightly distorted octahedral coordination geometry. The bridging bicyclo[2.2.2]octane and chloride ligands link the CdII cations into one‐dimensional ribbon‐like N—H...Cl hydrogen‐bonded chains along the b axis. An extensive hydrogen‐bonding network formed by N—H...Cl and C—H...Cl hydrogen bonds, and interchain π–π stacking interactions between adjacent tetrazole rings, consolidate the crystal packing, linking the poymeric chains into a three‐dimensional supramolecular network.  相似文献   

14.
The synthesis of new methylated thieno[2,3‐a] and [3,2‐b]carbazoles (5) (R=H) was achieved by a palladium‐catalyzed cross‐coupling, intramolecular reductive cyclization sequence of reactions. The cyclization precursors 6‐(2′‐nitrophenyl)benzo[b]thiophenes (3) were obtained by Suzuki cross‐coupling of 6‐boronated methylbenzo[b]thiophenes intermediates (2) with 2‐bromo or iodonitrobenzene. The boronated intermediates (2) were prepared via bromine‐lithium exchange followed by boron transmetalation and coupled in situ using Pd(OAc)2 giving thus a “one‐pot” three steps reaction from the 6‐bromobenzo[b]thio‐phenes (1) to the cyclization precursors (3) . In the reductive cyclization step, N‐ethylthienocarbazoles (5) (R=Et) were also obtained. Several experiments have been made varying the amount of triethylphosphite and the time of reaction, to avoid their formation.  相似文献   

15.
The noncovalent interactions between 4′, 6‐diamidino‐2‐phenylindole (DAPI) and sulfobutylether β‐cyclodextrin (SBE7β‐CD) are evaluated by using photochemical measurements and compared with that of native β‐CD. Contrasting recognition behavior and intriguing modulations in the photochemical behavior of DAPI were observed. In particular, a large enhancement in the fluorescence emission and excited‐state lifetime were seen upon binding to SBE7β‐CD, with the SBE7β‐CD inclusion complex being approximately 1000 times stronger than that of β‐CD. The ensuing fluorescence “turn on” was demonstrated to be responsive to chemical stimuli, such as metal ions and adamantylanmine (AD). Upon addition of Ca2+/AD, nearly quantitative dissociation of the complex was established to regenerate the free dye and result in fluorescence “turn off”. The SO3? groups are believed to be critical for the strong and selective binding of the chromophore and the stimuli‐responsive tuning. This is as an important design criterion for the optimization of host–guest properties through supramolecular association, which is relevant for drug‐delivery applications.  相似文献   

16.
Three coordination polymers (CPs) based on the 5‐[4‐(1H‐imidazol‐1‐yl)phenyl]‐1H‐tetrazole ( HL ) ligand, namely, [Cu(μ2‐ L )(μ4‐pbda)(H2O)] ( 1 ), [Cu2(μ‐Hbtc)(H2btc)(μ3‐OH)(μ4‐ HL )] ( 2 ) and [Cu53‐ L )(μ4‐ L )(μ3‐ip)(μ3‐OH)(H2O)2] · 2H2O ( 3 ) (H2pbda = 1,4‐benzenedicarboxylic acid, H3btc = 1,3,5‐benzenetricarboxylic acid, H2ip = isophthalic acid) were hydrothermally synthesized and structurally characterized. Complex 1 represents “weave”‐type 2D layers consisting of wave‐like 1D chains and 1D straight chains, which are further connected by hydrogen bonds to form a 3D supramolecular structure. Complex 2 exhibits a uninodal (4)‐connected 2D layer with a point symbol of {44 · 62}, in which the L ligand can be described as μ5‐bridging and the H2btc ions display multiple kinds of coordination modes to connect CuII ions into 1D “H”‐type Cu‐H2btc chains. In complex 3 , 2D Cu‐ L layers with two kinds of grids and 1D “stair”‐type Cu‐ip chains link each other to construct a 3D {412 · 63} framework, which contains the pentanuclear subunits. Deprotonated degree and coordination modes of carboxylate ligands may consequentially influence the coordination patterns of main ligands and the final structures of complexes 1 – 3 . Furthermore, electrochemical behaviors and electrocatalytic activities of the title complexes were analyzed at room temperature, suggesting practical applications in areas of electrocatalytic reduction toward nitrite and hydrogen dioxide in aqueous solutions, respectively.  相似文献   

17.
Poly(isoindigo‐alt‐3,4‐difluorothiophene) (PIID[2F]T) analogues used as “polymer acceptors” in bulk‐heterojunction (BHJ) solar cells achieve >7 % efficiency when used in conjunction with the polymer donor PBFTAZ (model system; copolymer of benzo[1,2‐b:4,5‐b′]dithiophene and 5,6‐difluorobenzotriazole). Considering that most efficient polymer‐acceptor alternatives to fullerenes (e.g. PC61BM or its C71 derivative) are based on perylenediimide or naphthalenediimide motifs thus far, branched alkyl‐substituted PIID[2F]T polymers are particularly promising non‐fullerene candidates for “all‐polymer” BHJ solar cells.  相似文献   

18.
Orthogonal self‐assembly of multiple components represents an efficient strategy to afford hierarchical and multifunctional assemblies. Here, we demonstrate the orthogonal recognition behaviors between benzo‐21‐crown‐7/secondary ammonium salt and terpyridine/metal ions (Fe2+ or Zn2+) recognition motifs. Main‐chain supramolecular polymers are subsequently achieved via “one‐pot” mixing of the three monomers together (heteroditopic monomer 1 , homoditopic secondary ammonium salt monomer 2, and Fe(BF4)2•6H2O or Zn(OTf)2), which are confirmed by 1H NMR, UV–Vis, DOSY, and viscosity measurements. Moreover, different metal ions (Fe2+ or Zn2+) exert considerable effects on the size of the resulting supramolecular polymers. Integration of two different types of non‐covalent interactions renders dynamic and responsive properties for the resulting supramolecular polymers, as triggered by a variety of external stimuli such as temperature, potassium cation, as well as stronger chelating ligands. Therefore, the current work is a prerequisite for the future application of such orthogonal assemblies as intelligent supramolecular materials.

  相似文献   


19.
Two novel supramolecular complexes, [Cu(bopapa)(mal)]·H2O·CH3OH (1) and {[Cu(bopapap)](Hmal)2}·2H2O (2) [bpapa = bis-[6-(2-pyridylamino)pyrid-2-yl]amine, bpapap = 2,6-bis-[6-(pyrid-2-ylamino)pyrid-2-ylamino]- pyridine, mal=maleate dianion] were rationally designed and synthesized based on flexible multidentate ligands and copper(Ⅱ) maleate. Complexes 1 and 2 were all characterized by elemental analysis, spectroscopic techniques, thermal analysis and single crystal X-ray diffraction analysis. Complex 1 is of an infinite 3-D supramolecular framework constructed by 2-D sheets to contain 1-D helical chains formed by intermolecular hydrogen bond inter- actions between the non-coordinated oxygen atoms from maleate and nitrogen atoms from amino groups of bpapa. Complex 2 also takes a 3-D supramolecular structure, which is built from 2-D rhombic sheets produced by sequential dimer units. Interestingly, three pairs of symmetrical hydrogen bonds generate these dimer units.  相似文献   

20.
A series of iridium‐ and rhodium‐based hexanuclear organometallic cages containing 2,5‐dichloro‐3,6‐dihydroxy‐1,4‐benzoquinone, 9,10‐dihydroxy‐1,4‐anthraquinone, and 6,11‐dihydroxynaphthacene‐5,12‐dione ligands were synthesized from the self‐assembly of the corresponding molecular “clips” and 2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine ligands in good yields. These organometallic cages can form inclusion systems with a wide variety of π‐donor substrates, including coronene, pyrene, [Pt(acac)2], and hexamethoxytriphenylene. The 1:1 complexation of the resulting supramolecular assemblies was confirmed by 1H NMR spectroscopy. Large complexation shifts (Δδ>1 ppm) were observed in the 1H NMR spectra of guests in the presence of cage [Cp*6M6(μ‐DHNA)3(tpt)2](OTf)6 ( 6a ; M=Ir, tpt=2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine). The formation of discrete 1:1 donor–acceptor complexes, pyrene ?6 b (M=Rh), coronene ?6 a , coronene ?6 b , and [Pt(acac)2] ?6 a was confirmed by their single‐crystal X‐ray analyses. In these systems, the most important driving force for the formation of guest–host complexes is clearly the donor–acceptor π???π stacking interaction, including charge‐transfer interactions between the electron‐donating and electron‐accepting aromatic components. These structures provide compelling evidence for the existence of strong attractive forces between the electron‐deficient triazine core and electron‐rich guest. The results presented here may provide useful guidance for designing artificial receptors for functional biomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号