首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 833 毫秒
1.
采用X射线粉末衍射(XRD)、X射线荧光光谱(XRF)和扫描电子显微镜-能谱(SEM-EDS)等测试技术对西安西曹M16唐墓出土的2尊唐代彩绘陶俑颜料进行了化学组成分析。结果表明,陶俑中含有丰富的无机颜料,其中红色颜料的显色成分为铅丹(Pb3O4);白色颜料的显色成分为铅白(PbCO3)和石灰石(CaCO3);粉色颜料的主要显色成分为铅丹和铅白的混合物;青色颜料为铜绿(Cu2(OH)2CO3)和青石(Cu3(OH)2(CO32)混合物。  相似文献   

2.
《中国化学》2017,35(7):1043-1049
Lead titanate nanostructures with different phases and morphologies, layered hexagonal PbTiO2(CO3)0.3‐ (NO3)0.35(OH) nanosheets, pyrochlore Pb2Ti2O6 nanodendites, pre‐perovskite PbTiO3 nanofibres and perovskite PbTiO3 nanoplates, have been synthesized via a conventional hydrothermal route assisted with different concentrations of tetramethylammonium hydroxide (TMAH). X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high‐resolution TEM (HRTEM) were employed to characterize the phase, morphology and growth behavior of the synthesized samples. The results reveal that at low TMAH concentration the obtained samples are mainly of PbTiO2(CO3)0.3(NO3)0.35(OH) nanosheets. With the TMAH concentration increasing, the obtained samples change to pyrochlore Pb2Ti2O6 nanodendites, pre‐perovskite PbTiO3 nanofibres and perovskite PbTiO3 nanoplates in turn. With the basis of the experimental results, the phase‐ and morphology‐evolution mechanism of the lead titanate nanostructures is discussed by combining the analysis of the lattice structure feature and the properties of TMAH.  相似文献   

3.
Synthetic hydro­cerussite [trilead dihydroxide dicarbonate, Pb3(CO3)2(OH)2] can be easily obtained, as a white powder, by the action of carbon dioxide and water on either lead or litharge at pH 4–5. This compound is also found in lead corrosion technological products as a fine‐grained phase. Abinitio crystal structure determination was carried out on X‐ray powder diffraction data. The heavy‐atom method and the Patterson function helped determine the crystallographic model and the atom locations. The Rietveld fitting procedure was used for the final refinement. The atomic arrangement is closely related to the structures of other lead hydro­xide carbonates. The hydro­cerussite structure can be viewed as a sequence of two types of layers stacked along [001]. Layer A is composed of Pb and CO3, and layer B is composed of Pb and OH. The stacking sequence is …BAABAA…  相似文献   

4.
X-ray fluorescence spectroscopy (XRF) and Raman spectroscopy have been used to examine 15th century mediaeval and 16th century renaissance vault paintings in the Our Lady's Cathedral (Antwerp, Belgium) in view of their restoration. The use of mobile instruments made it possible to work totally non-destructively. This complementary approach yields information on the elemental (XRF) and on the molecular composition (Raman) of the pigments. For the 15th century vault painting the pigments lead–tin yellow (Pb2SnO4), lead white (2PbCO3·Pb(OH)2), vermilion (HgS), massicot (PbO) and azurite (2CuCO3·Cu(OH)2) could be identified. The pigments used for the 16th century vault painting could be identified as red lead (Pb3O4), hematite (Fe2O3), lead white (2PbCO3·Pb(OH)2) and azurite (2CuCO3·Cu(OH)2). For both paintings the presence of the strong Raman scatterer calcite (CaCO3) resulted in a difficult identification of the pigments by Raman spectroscopy. The presence of gypsum (CaSO4·2H2O) on the mediaeval vault painting probably indicates that degradation took place.  相似文献   

5.
Three new carbonate halides, Cs3Pb2(CO3)3I, KBa2(CO3)2F and RbBa2(CO3)2F have been synthesized with hydrothermal and solid‐state methods. Cs3Pb2(CO3)3I is the first product in the lead carbonate iodides family; KBa2(CO3)2F and RbBa2(CO3)2F are the first two centrosymmetric compounds found in the alkaline–alkaline earth carbonate fluorides family. Cs3Pb2(CO3)3I crystallizes in a centrosymmetric space group C2/m, and exhibits a two‐ dimensional layered structure which is formed by [Cs4Pb4(CO3)6I2] double‐layers consisting of [Pb2(CO3)3I] single‐layers bridged by the Cs atoms. KBa2(CO3)2F and RbBa2(CO3)2F, which are isostructural, crystallize in a trigonal crystal system with a centric space group of R featuring a honeycomb‐like framework. First principle calculations indicate that Cs3Pb2(CO3)3I has a moderate birefringence and explain the difference between the band gaps of the title compounds from electron structures. The effects of cations and halogens on the structures and properties of the title compounds are also discussed.  相似文献   

6.
Pb2(OH)2[p‐O2C‐C6H4‐CO2]: Synthesis and Crystal Structure Single crystals of Pb2(OH)2[p‐O2C‐C6H4‐CO2] ( 1 ) were obtained by hydrothermal reaction of terephthalic acid and PbCO3 at 180 °C (10 days). 1 crystallizes in the monoclinic space group P21/c with Z = 2 (a = 1115.6(2) pm, b = 380.10(4) pm, c = 1141.3(2) pm, β = 93.39(1)°, V = 0.4831(1) nm3). The crystal structure is characterized by ladder‐type Pb(OH)3/3 double chains, which are connected to a three‐dimensional framework by terephthalate dianions.  相似文献   

7.
Two holy water fonts (dated at the beginning of the XVII century) in the Santa Maria della Steccata Church in Parma (Italy) have recently been restored. Before the intervention, a detailed investigation on their degradation products was carried out to understand the mechanisms of alteration of the materials and to suggest appropriate restoration procedures.The analyses were performed by means of powder X-ray diffraction (XRD), micro-Fourier transform infrared (FTIR) and micro-Raman spectroscopies. Calcite, iron oxides, silicates and sodium chloride (from salted holy water) were found in the red coloured calcarenite. On and under the lead coverings, different lead oxides (mainly massicot), other lead salts (lead basic carbonate, cerussite, plumbonacrite Pb10O(OH)6(CO3)6 and lead-chlorine compounds as laurionite PbOHCl and phosgenite Pb2CO3Cl2) were identified by Raman spectroscopy and XRD. Haematite α-Fe2O3, goethite α-FeO(OH) and lepidocrocite γ-FeO(OH) were found on and around the iron hinges.Lead compounds and sodium chloride, through crystallization and solubilization cycles, were responsible for the stone's degradation, whereas the iron corrosion materials on the hinges produced mechanical stress and cracks in the stone.Various suggestions have been given on how to restore these fonts and to remove the causes of damage.  相似文献   

8.
Summary Free energies of formation of the rare copper(II) secondary minerals linarite, (Pb,Cu)2SO4(OH)2, caledonite, Pb5Cu2CO3(SO4)3(OH)6, and wherryite, Pb4CuCO3(SO4)2O(OH,Cl)2, and of the complex lead(II) species leadhillite, Pb4SO4(CO3)2(OH)2, have been estimated using solution techniques. Values derived are: –1212(1), –4328(2), –2871(1), and –2525(4) kJ mol–1 at 298.2K respectively, and have been used to construct stability field diagrams involving these, and related species. They are anomalous in the sense that they are not the usually found sulphates and carbonates of copper(II) and lead(II) in the natural environment. The data, together with field observations of mineral associations, has been used to reconstruct part of the chemical paragenetic sequence of the oxidized zone of the Mammoth —St. Anthony Mine, Tiger, Arizona, U.S.A. Many of the rare species above and other complex halides of copper(II), silver(I) and lead(II) formed under conditions where and aSO 4 2– were comparatively low, and around neutral values of pH. Several trends in the chemistry of the development of the anomalous oxidized zone at Tiger are apparent, and these are discussed in the light of the above findings.  相似文献   

9.
Four mixed oxochalcogenate compounds in the systems PbII/XVI/TeIV/O/(C), (XVI = S and Se) were obtained as minority phases under hydrothermal conditions (210 °C, one week). Their compositions as determined on the basis of single‐crystal X‐ray diffraction data are Pb3(SeO4)(TeO3)2, Pb7O4(SeO4)2(TeO3), Pb5(SeO4)2(TeO4)(CO3), and Pb2(SO4)(TeO3). All crystal structures are centrosymmetric, and in each case the oxochalcogenate anions are isolated from each other. The Pb2+ cations exhibit distorted coordination polyhedra with coordination numbers ranging from six to ten, in the majority of cases with a “one‐sided” coordination by oxygen atoms. The presence of the very rare square‐pyramidal TeIVO44– anion distinguishes the structure of Pb5(SeO4)2(TeO4)(CO3) from the other structures, where the oxotellurate(IV) anions exist in the TeO32– trigonal‐pyramidal configuration.  相似文献   

10.
Basic Carbonates of Dysprosium: Dy2O2(CO3) and Dy(OH)(CO3) Single crystals of the basic carbonates Dy2O2(CO3) and Dy(OH)(CO3) are obtained via hydrothermal synthesis from a mixture of DyCl3 · 6 H2O and K2CO3 and Cs2CO3, respectively, as well as CO2 and H2O in a steel autoclave at 480 and 400 °C, respectively. The crystal structures are isotypic with those of II‐Nd2O2(CO3) and B–Nd(OH)(CO3), respectively; Dy2O2(CO3): hexagonal, P63/mmc, Z = 2; a = 386.9(2), c = 1516.3(3) pm; Dy(OH) · (CO3): hexagonal, P‐6, Z = 18; a = 1201.0(1), c = 971.8(9) pm.  相似文献   

11.
Synthesis and Crystal Structure Determination of Lead(II) Oxide Halide Alcoholates with Different Connectivity of Pb4O4 Heterocubane‐like Subunits The reaction of red lead(II) oxide (Litharge) and lead(II) halide (Cl? and Br?) with diethylene glycole at a temperature of 180 °C leads to the isotypic compounds [Pb6(C4H8O3)O2Cl6] (1) and [Pb6(C4H8O3)O2Br6] (2) . In a similar synthesis with PbI2 as educt at temperature of 160 °C the two modifications β‐[Pb6(C4H8O3)O2I6] (3) and α‐[Pb6(C4H8O3)O2I6] (4) were found, whereas at a reaction temperature of 180 °C [Pb9(C2H4O2)(C4H8O3)O3I8] (5) was surprisingly obtained as product. The X‐ray diffraction data show that at a temperature of 180 °C a splitting of the ether took place. The cited compounds show cubane like subunits built by lead and oxygen atoms. These fragments are connected by alkoholate molecules. In 5 additionally an I6 octahedra centered by lead is observed.  相似文献   

12.
Inhaltsübersicht. Die erstmals dargestellte Verbindung HgPb2O(OH)Br3 kristallisiert orthorhombisch in der Raumgruppe Aba2 (Nr. 41) mit den Gitterkonstanten a = 14,652(3) Å, b = 14,6491(8) Å, c = 7,782(2) Å und Z = 8. Die Bestimmung der Kristallstruktur mit Einkristallmethoden zeigte “isolierte”, verzerrt würfelförmige Baugruppen der Zusammensetzung [Hg2Pb4O2(OH)2]. Diese Einheiten werden von Bromidionen umhüllt. HgPb2O(OH)Br3 stellt damit hinsichtlich des strukturellen Aufbaus ein Bindeglied zwischen den Verbindungen [Pb4(OH)4](ClO4)4 · 2H2O [1] und Pb9O4Br10 [2] dar. Preparation and Crystal Structure of HgPb2O(OH)Br3 The new compound, HgPb2O(OH)Br3 was prepared and investigated by X-ray crystal structure analysis. Crystals of orthorhombic symmetry show space group Aba2 (No. 41) with lattice parameters a = 14.652(3) Å, b = 14.6491(8) Å, c = 7.782(2) Å, and Z = 8. Remarcable structural units with heterocubane skeleton were found. The [Hg2Pb4O2(OH)2] group forms a new member of the structural class between [Pb4(OH)4] and [Pb8O4] units with the relating compounds [Pb4(OH)4)](ClO4)4 · 2 H2O [1] und Pb9O4Br10 [2].  相似文献   

13.
On Lead Silver Phosphates with the Apatite Structure The hitherto unknown leas silver phosphate (Pb8Ag2PO4)6 has been prepared. It has an apatite structure with unoccupied halide positions like the analogous lead alkali compounds and forms solid solutions with Pb10(PO4)6O, Pb10(PO4)6(OH)2, and Pb10(PO4)6Cl2. At 800°C, Pb8Ag2(PO4)6 decomposes to solid Pb3(PO4)2 and PbAgPO4. (Pb, Ag) apatites have been precipitated from aqueous solutions. On the side being richer in Ag they can approximately be formulated as solid solutions between Pb8Ag2(PO4)6 and Pb10(PO4)6(OH)2. However, the i.r. spectrum reveals clear differences compared with thermal and hydrothermal preparations. The distribution of cations shows nonideal behaviour with reduced tendency for fixation of Ag+, if the content of Ag in the precipitate is high. The compound PbAgPO4 decomposes below 520°C to Pb8Ag2(PO4)6 and Ag3PO4. The arsenate apatite Pb8Ag2(AsO4)6 decomposes below 530°C to Pb3(AsO4)2 and Ag3AsO4.  相似文献   

14.
Indium arsenate(V) monohydrate, InAsO4·H2O, (I), crystallizes in the structure type of MnMoO4·H2O. The structure is built of In2O8(H2O)2 dimers (mean In—O = 2.150 Å) corner‐linked to slightly distorted AsO4 tetra­hedra (mean As—O = 1.686 Å). The linkage results in a three‐dimensional framework, with small voids into which the apical water ligand of the InO5(H2O) octa­hedron points. The hydrogen bonds in (I) are of medium strength. Lead(II) indium arsenate(V) hydrogen arsenate(V), PbIn(AsO4)(AsO3OH), (II), represents the first reported lead indium arsenate. It is characterized by a framework structure of InO6 octa­hedra corner‐linked to AsO4 and AsO3OH tetra­hedra. The resulting voids are occupied by Pb2O10(OH)2 dimers built of two edge‐sharing highly distorted PbO6(OH) polyhedra (mean Pb—O = 2.623 Å). The compound is isotypic with PbFeIII(AsO4)(AsO3OH). The average In—O bond length in (II) is 2.157 Å. In both arsenates, all atoms are in general positions.  相似文献   

15.
The synthesis, structure, and magnetic properties of five lanthanide complexes with multidentate oxime ligands are described. Complexes 1 and 2 ( 1 : [La2(pop)2(acac)4(CH3OH)], 2 : [Dy2(pop)(acac)5]) are synthesized from the 2‐hydroxyimino‐N‐[1‐(2‐pyridyl)ethylidene]propanohydrazone (Hpop) ligand, while 3 , 4 , and 5 ( 3 : [Dy2(naphthsaoH)2(acac)4H(OH)]?0.85 CH3CN?1.58 H2O; 4 : [Tb2(naphthsaoH)2(acac)4H(OH)]?0.52 CH3CN?1.71 H2O; 5 : [La6(CO3)2(naphthsao)5 (naphthsaoH)0.5(acac)8(CO3)0.5(CH3OH)2.76H5.5(H2O)1.24]?2.39 CH3CN?0.12 H2O) contain 1‐(1‐hydroxynaphthalen‐2‐yl)‐ethanone oxime (naphthsaoH2). In 1 – 4 , dinuclear [Ln2] complexes crystallize, whereas hexanuclear LaIII complex 5 is formed after fixation of atmospheric carbon dioxide. DyIII‐based complexes 2 and 3 display single‐molecule‐magnet properties with energy barriers of 27 and 98 K, respectively. The presence of a broad and unsymmetrical relaxation mode observed in the ac susceptibility data for 3 suggest two different dynamics of the magnetization which might be a consequence of independent relaxation processes of the two different Dy3+ ions.  相似文献   

16.
The reaction of Pb(CH3COO)2·3H2O with N‐benzesulfonyl‐L‐glutamic acid in the presence of 2, 2′‐bipyridine (bipy) or 1,10‐phenanthroline (phen) produced two novel complexes [Pb2(Bs‐glu)2(bipy)2] ( 1 ) and [Pb2(Bs‐glu)2(phen)2] ( 2 ) (Bs‐glu = N‐benzesulfonyl‐L‐glutamic acid dianion). In 1 chains bearing alternative 16‐membered rings and Pb2O3 nodes are constructed from the interactions of PbII ions with the carboxylates of Bs‐glu ligands. To the best of our knowledge, this is the first lead(II) complex of carboxylates with the formation of chains of Pb2O3. In 2 the 16‐membered ring units are connected by centrosymmetric Pb2O2 nodes to form chains. Complexes 1 and 2 construct the 3‐D supramolecular architectures through versatile hydrogen bonds and π‐π stacking interactions.  相似文献   

17.
The complex carbonates of iron(III) are shown to be anionic in nature. The solutions containing these complexes show a maximum absorbance at 460 nm. The complex carbonates of iron(III), viz., (i) K6[Fe2(OH)2(CO3)5] · H2O, — (ii) Na2[Fe3O2(OH)3(CO3)2], — (iii) K[Co(NH3)6]2[Fe3(OH)4(CO3)6], — (iv) K5[Co(NH3)6]3[Fe3(OH) 4(CO3)6]2, — (v) K[Co(NH3)6][Fe2(OH)4(CO3)3], and (vi) NH4[Co(NH3)6][Fe2(OH)4(CO3)3] are isolated and studied by thermogravimetry. The infrared spectra of these compounds are recorded and probable band assignments made. Besides, the reaction between KHCO3 and Fe(NO3)3 was studied through chemical and physicochemical methods.  相似文献   

18.
The centrosymmetric binuclear structure of [Pb2(H‐Norf)2(ONO2)4]shows the geometry around each lead(II) atom to be distorted trigonal bipyramidal with Pb–O distances ranging from 2.357(3) to 2.769(4) Å. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
本文利用各种光谱手段在体外研究了各种浓度的Pb2+对菠菜Rubisco活性影响的机制。 结果表明,Rubisco活性随着Pb2+处理浓度的增加而逐渐下降,低浓度Pb2+下Rubisco的动力学常数和最大反应速率分别为1.74 µM 和 0.42 µmol CO2/mg protein∙min,高浓度Pb2+下Rubisco的动力学常数和最大反应速率分别为11.82 µM and 0.28 µmol CO2/mg protein∙min。光谱学分析证实Pb2+可直接结合到Rubisco上, 其结合位点数为1.1个,结合常数分别为8.63×104 和 2.18×105 L/mol。ICP-MS和圆二色谱分析证实Pb2+取代了酶活性中心的Mg2+ 并改变了酶的构象。  相似文献   

20.
The Night Watch, painted in 1642 and on view in the Rijksmuseum in Amsterdam, is considered Rembrandt's most famous work. X-ray powder diffraction (XRPD) mapping at multiple length scales revealed the unusual presence of lead(II) formate, Pb(HCOO)2, in several areas of the painting. Until now, this compound was never reported in historical oil paints. In order to get insights into this phenomenon, one possible chemical pathway was explored thanks to the preparation and micro-analysis of model oil paint media prepared by heating linseed oil and lead(II) oxide (PbO) drier as described in 17th century recipes. Synchrotron radiation based micro-XRPD (SR-μ-XRPD) and infrared microscopy were combined to identify and map at the micro-scale various neo-formed lead-based compounds in these model samples. Both lead(II) formate and lead(II) formate hydroxide Pb(HCOO)(OH) were detected and mapped, providing new clues regarding the reactivity of lead driers in oil matrices in historical paintings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号