首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CO2 level in the atmosphere has been increasing since the industrial revolution owing to anthropogenic activities. The increased CO2 level has led to global warming and also has detrimental effects on human beings. Reducing the CO2 level in the atmosphere is urgent for balancing the carbon cycle. In this regard, reduction in CO2 emission and CO2 storage and usage are the main strategies. Among these, CO2 usage has been extensively explored, because it can reduce the CO2 level and simultaneously provide opportunities for the development in catalysts and industries to convert CO2 as a carbon source for preparing valuable products. However, transformation of CO2 to other chemicals is challenging owing to its thermodynamic and kinetic stabilities. Among the CO2 utilization techniques, electrochemical CO2 reduction (ECR) is a promising alternative because it is generally conducted under ambient conditions, and water is used as the economical hydrogen source. Moreover, ECR offers a potential route to store electrical energy from renewable sources in the form of chemical energy, through generation of CO2 reduction products. To improve the energy efficiency and viability of ECR, it is important to decrease the operational overpotential and maintain large current densities and high product selectivities; the development of efficient electrocatalysts is a critical aspect in this regard. To date, many kinds of materials have been designed and studied for application in ECR. Among these materials, metal oxide-based materials exhibit excellent performance as electrocatalysts for ECR and are attracting increasing attention in recent years. Investigation of the mechanism of reactions that involve metallic electrocatalysts has revealed the function of trace amount of oxidized metal species—it has been suggested that the presence of metal oxides and metal-oxygen bonds facilitates the activation of CO2 and the subsequent formation and stabilization of the reaction intermediates, thereby resulting in high efficiency and selectivity of the ECR. Although the stability of metal oxides is a concern as they are prone to reduction under a cathodic potential, the catalytic performance of metal oxide-based catalysts can be maintained through careful designing of the morphology and structure of the materials. In addition, introducing other metal species to metal oxides and fabricating composites of metal oxides and other materials are effective strategies to achieve enhanced performance in ECR. In this review, we summarize the recent progress in the use of metal oxide-based materials as electrocatalysts and their application in ECR. The critical role, stability, and structure-performance relationship of the metal oxide-based materials for ECR are highlighted in the discussion. In the final part, we propose the future prospects for the development of metal oxide-based electrocatalysts for ECR.  相似文献   

2.
The discovery of high-performance catalysts for the electrochemical CO2 reduction reaction ( CO2RR) has faced an enormous challenge for years. The lack of cognition about the surface active structures or centers of catalysts in complex conditions limits the development of advanced catalysts for CO2RR. Recently, the positive valent metal sites (PVMS) are demonstrated as a kind of potential active sites, which can facilitate carbon dioxide (CO2) activation and conversation but are always unstable under reduction potentials. Many advanced technologies in theory and experiment have been utilized to understand and develop excellent catalysts with PVMS for CO2RR. Here, we present an introduction of some typical catalysts with PVMS in CO2RR and give some understanding of the activity and stability for these related catalysts.  相似文献   

3.
Herein we introduce a straightforward, low cost, scalable, and technologically relevant method to manufacture an all‐carbon, electroactive, nitrogen‐doped nanoporous‐carbon/carbon‐nanotube composite membrane, dubbed “HNCM/CNT”. The membrane is demonstrated to function as a binder‐free, high‐performance gas diffusion electrode for the electrocatalytic reduction of CO2 to formate. The Faradaic efficiency (FE) for the production of formate is 81 %. Furthermore, the robust structural and electrochemical properties of the membrane endow it with excellent long‐term stability.  相似文献   

4.
The electrochemical reduction of CO2 to fuels or commodity chemicals is a reaction of high interest for closing the anthropogenic carbon cycle. The role of the electrolyte is of particular interest, as the interplay between the electrocatalytic surface and the electrolyte plays an important role in determining the outcome of the CO2 reduction reaction. Therefore, insights on electrolyte effects on the electrochemical reduction of CO2 are pivotal in designing electrochemical devices that are able to efficiently and selectively convert CO2 into valuable products. Here, we provide an overview of recently obtained insights on electrolyte effects and we discuss how these insights can be used as design parameters for the construction of new electrocatalytic systems.  相似文献   

5.
The general synthesis and control of the coordination environment of single-atom catalysts (SACs) remains a great challenge. Herein, a general host–guest cooperative protection strategy has been developed to construct SACs by introducing polypyrrole (PPy) into a bimetallic metal–organic framework. As an example, the introduction of Mg2+ in MgNi-MOF-74 extends the distance between adjacent Ni atoms; the PPy guests serve as N source to stabilize the isolated Ni atoms during pyrolysis. As a result, a series of single-atom Ni catalysts (named NiSA-Nx-C) with different N coordination numbers have been fabricated by controlling the pyrolysis temperature. Significantly, the NiSA-N2-C catalyst, with the lowest N coordination number, achieves high CO Faradaic efficiency (98 %) and turnover frequency (1622 h−1), far superior to those of NiSA-N3-C and NiSA-N4-C, in electrocatalytic CO2 reduction. Theoretical calculations reveal that the low N coordination number of single-atom Ni sites in NiSA-N2-C is favorable to the formation of COOH* intermediate and thus accounts for its superior activity.  相似文献   

6.
The study of CO2 electrochemical reduction to useful compounds using bare or modified BDD electrode attracts numerous attentions. Meanwhile, the efficiency of products obtained from CO2 electrochemical reduction is known to be determined by the electrode material and the electrolyte. Formic acid as main product and CO as a minor product, have also been known on the CO2 reduction using BDD electrode. Recently, we reported the successful improvement of CO production from the reduction of CO2 by decorating the surface of BDD electrode with palladium particles. Following this, herein, we present further investigation on electrolyte dependence, including cation and anion dependence and also concentration effect in order to understand deeply the CO2 reduction on surface of palladium modified BDD electrode. The results suggest the use of NaCl and KCl as a catholyte for optimum performance, in addition to the improvement of CO2 reduction product in higher electrolyte concentration.  相似文献   

7.
Electrochemical reduction of CO2 could mitigate environmental problems originating from CO2 emission. Although grain boundaries (GBs) have been tailored to tune binding energies of reaction intermediates and consequently accelerate the CO2 reduction reaction (CO2RR), it is challenging to exclusively clarify the correlation between GBs and enhanced reactivity in nanostructured materials with small dimension (<10 nm). Now, sub‐2 nm SnO2 quantum wires (QWs) composed of individual quantum dots (QDs) and numerous GBs on the surface were synthesized and examined for CO2RR toward HCOOH formation. In contrast to SnO2 nanoparticles (NPs) with a larger electrochemically active surface area (ECSA), the ultrathin SnO2 QWs with exposed GBs show enhanced current density (j), an improved Faradaic efficiency (FE) of over 80 % for HCOOH and ca. 90 % for C1 products as well as energy efficiency (EE) of over 50 % in a wide potential window; maximum values of FE (87.3 %) and EE (52.7 %) are achieved.  相似文献   

8.
The catalytic hydrogenation of CO2 includes the dissociation of hydrogen and further reaction with CO2 and intermediates. We investigate how the amount of hydrogen in the bulk of the catalyst affects the hydrogenation reaction taking place at the surface. For this, we developed an experimental setup described herein, based on a magnetic suspension balance and an infrared spectrometer, and measured pressure-composition isotherms of the Pd−H system under conditions relevant for CO2 reduction. The addition of CO2 has no influence on the measured hydrogen absorption isotherms. The pressure dependence of the CO formation rate changes suddenly upon formation of the β-PdH phase. This effect is attributed to a smaller surface coverage of hydrogen due to repulsive electronic interactions affecting both bulk and surface hydrogen.  相似文献   

9.
化石燃料的燃烧和其他人类活动排放了大量的CO2气体,引发了诸多环境问题。电催化CO2还原反应(CO2RR)可以储存间歇可再生能源,实现人为闭合碳循环,被认为是获得高附加值化学品和燃料的有效途径。电催化CO2RR涉及多个电子-质子转移步骤,其中*CO通常被认为是关键中间体。铜由于对*CO具有合适的吸附能,已被广泛证明是唯一能够有效地将CO2还原为碳氢化合物和含氧化合物的金属催化剂。然而,纯Cu稳定性差、产品选择性低、过电位高,阻碍了工业级多碳产品的生产。构筑Cu基串联催化剂是提高CO2RR性能的一种有前途的策略。本文首先介绍电催化CO2RR的反应路线和串联机理。然后,系统地总结铜基串联催化剂对电催化CO2RR的最新研究进展。最后,提出合理设计和可控合成新型电催化CO2RR串联催化剂面临的挑战和机遇。  相似文献   

10.
Through the combustion of fossil fuels and other human activities, large amounts of CO2 gas have been emitted into the atmosphere, causing many environmental problems, such as the greenhouse effect and global warming. Thus, developing and utilizing renewable clean energy is crucial to reduce CO2 emission and achieve carbon neutrality. The electrochemical CO2 reduction reaction (CO2RR) has been considered as an effective approach to obtain high value-added chemicals and fuels, which can store intermittent renewable energy and achieve the artificial carbon cycle. In addition, due to its multiple advantages, such as mild reaction conditions, tunable products, and simple implementation, electrochemical CO2RR has attracted extensive attention. Electrochemical CO2RR involves multiple electron–proton transfer steps to obtain multitudinous products, such as C1 products (CO, HCOOH, CH4, etc.) and C2 products (C2H4, C2H5OH, etc.). The intermediates, among which *CO is usually identified as the key intermediate, and reaction pathways of different products intersect, resulting in an extremely complex reaction mechanism. Currently, copper has been widely proven to be the only metal catalyst that can efficiently reduce CO2 to hydrocarbons and oxygenates due to its suitable adsorption energy for *CO. However, the low product selectivity, poor stability, and high overpotential of pure Cu hinder its use for the production of industrial-grade multi-carbon products. Tandem catalysts with multiple types of active sites can sequentially reduce CO2 molecules into desired products. When loaded onto a co-catalyst that can efficiently convert CO2 to *CO (such as Au and Ag), Cu acts as an electron donor owing to its high electrochemical potential. *CO species generated from the substrate can spillover onto the surface of electron-poor Cu due to the stronger adsorption and be further reduced to C2+ products. The use of Cu-based tandem catalysts for electrochemical CO2RR is a promising strategy for improving the performance of CO2RR and thus, has become a research hotspot in recent years. In this review, we first introduce the reaction routes and tandem mechanisms of electrochemical CO2RR. Then, we systematically summarize the recent research progress of Cu-based tandem catalysts for electrochemical CO2RR, including Cu-based metallic materials (alloys, heterojunction, and core-shell structures) as well as Cu-based framework materials, carbon materials, and polymer-modified materials. Importantly, the preparation methods of various Cu-based tandem catalysts and their structure–activity relationship in CO2RR are discussed and analyzed in detail. Finally, the challenges and opportunities of the rational design and controllable synthesis of advanced tandem catalysts for electrochemical CO2RR are proposed.  相似文献   

11.
A surface reconstructing phenomenon is discovered on a defect-rich ultrathin Pd nanosheet catalyst for aqueous CO2 electroreduction. The pristine nanosheets with dominant (111) facet sites are transformed into crumpled sheet-like structures prevalent in electrocatalytically active (100) sites. The reconstruction increases the density of active sites and reduces the CO binding strength on Pd surfaces, remarkably promoting the CO2 reduction to CO. A high CO Faradaic efficiency of 93 % is achieved with a site-specific activity of 6.6 mA cm−2 at a moderate overpotential of 590 mV on the reconstructed 50 nm Pd nanosheets. Experimental and theoretical studies suggest the CO intermediate as a key factor driving the structural transformation during CO2 reduction. This study highlights the dynamic nature of defective metal nanosheets under reaction conditions and suggests new opportunities in surface engineering of 2D metal nanostructures to tune their electrocatalytic performance.  相似文献   

12.
The electrochemical CO2 reduction reaction (CO2RR) to yield synthesis gas (syngas, CO and H2) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2RR activity and the CO/H2 ratio. To address this issue, nitrogen-doped carbon supported single-atom catalysts are designed as electrocatalysts to produce syngas from CO2RR. While Co and Ni single-atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm−2) with CO/H2 ratios (0.23–2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single-atom configurations for the H2 and CO evolution. The results present a useful case on how non-precious transition metal species can maintain high CO2RR activity with tunable CO/H2 ratios.  相似文献   

13.
应用程序电位扫描法和电化学原位FTIR反射光谱从定量角度在分子水平 上研究了CO2在Rh电极上的电催化还原性能。红外光谱结果指出CO2还原的吸附产物为线型和桥式吸附态CO物种。在所研究和还原电位范围(-0.15-0.40V)和相同还原时间,CO2还原吸附物种的氧化电量随还原电位的负移而增大,在每个还原电位下,时间超过250s时都可达到一个相应的饱和值。原位红外光谱和电化学研究结果表明,CO2的还原与Rh电极表面氢吸附反应密切相关,同时需要一定数量相邻表面位的参与。因此生成的CO不能在Rh电极表面达到满单层吸附,而是形成均匀的亚单层分布。  相似文献   

14.
A series of manganese polypyridine complexes were prepared as CO2 reduction electrocatalysts. Among these catalysts, the intramolecular proton tunneling distance for metal hydride formation (PTD-MH) vary from 2.400 to 2.696 Å while the structural, energetic, and electronic factors remain essentially similar to each other. The experimental and theoretical results revealed that the selectivity of CO2 reduction reaction (CO2RR) is dominated by the intramolecular PTD-MH within a difference of ca. 0.3 Å. Specifically, the catalyst functionalized with a pendent phenol group featuring a slightly longer PTD-MH favors the binding of proton to the [Mn−CO2] adduct rather than the Mn center and results in ca. 100 % selectivity for CO product. In contrast, decreasing the PTD-MH by attaching a dangling tertiary amine in the same catalyst skeleton facilitates the proton binding on the Mn center and switches the product from CO to HCOOH with a selectivity of 86 %.  相似文献   

15.
利用可再生清洁能源将CO2转化为CO和其他小分子是合成含碳燃料的可观方法之一.间歇性可再生能源存储的重要策略之一是将二氧化碳进行电化学还原.选择具有高活性和稳定性的电催化剂对于电化学还原CO2至关重要.在这项研究中,我们使用简单的电沉积方法合成了具有纳米晶枝状结构的CuAu合金电极.各项表征显示原子比约为1∶1的CuA...  相似文献   

16.
Atomic hydrogen on the surface of a metal with high hydrogen solubility is of particular interest for the hydrogenation of carbon dioxide. In a mixture of hydrogen and carbon dioxide, methane was markedly formed on the metal hydride ZrCoHx in the course of the hydrogen desorption and not on the pristine intermetallic. The surface analysis was performed by means of time‐of‐flight secondary ion mass spectroscopy and near‐ambient pressure X‐ray photoelectron spectroscopy, for the in situ analysis. The aim was to elucidate the origin of the catalytic activity of the metal hydride. Since at the initial stage the dissociation of impinging hydrogen molecules is hindered by a high activation barrier of the oxidised surface, the atomic hydrogen flux from the metal hydride is crucial for the reduction of carbon dioxide and surface oxides at interfacial sites.  相似文献   

17.
Visible‐light‐driven photoreduction of CO2 to energy‐rich chemicals in the presence of H2O without any sacrifice reagent is of significance, but challenging. Herein, Eosin Y‐functionalized porous polymers (PEosinY‐N, N=1–3), with high surface areas up to 610 m2 g?1, are reported. They exhibit high activity for the photocatalytic reduction of CO2 to CO in the presence of gaseous H2O, without any photosensitizer or sacrifice reagent, and under visible‐light irradiation. Especially, PEosinY‐1 derived from coupling of Eosin Y with 1,4‐diethynylbenzene shows the best performance for the CO2 photoreduction, affording CO as the sole carbonaceous product with a production rate of 33 μmol g?1 h?1 and a selectivity of 92 %. This work provides new insight for designing and fabricating photocatalytically active polymers with high efficiency for solar‐energy conversion.  相似文献   

18.
电催化还原二氧化碳成多碳燃料一直是研究的热点. 而找到活性高,选择性优,稳定性好的催化剂一直是研究者们奋斗的目标. 二氧化锰因其独特的物理和化学性质被广泛的应用于电催化领域,而缺陷的调控可以改变催化剂的电子性质,在此次工作中作者系统地研究了在有氧缺陷和没有氧缺陷的二维二氧化锰上的电催化二氧化碳还原反应. 通过利用自旋极化密度泛函理论,作者分别计算了他们的电子性质和分子在吸附过程中的能量值. 结果显示,缺陷的引入改变了二氧化锰的特性,使其从半导体性质变为半金属性质,从而提高催化剂的导电性. 同时,分析能量图也很容易发现对应产品的选择性也发生了变化. 二氧化锰有利于甲酸的产生,而氧缺陷的二氧化锰更有利于一氧化碳的生成. 本研究将为二氧化碳还原的其他非贵金属氧化物催化剂的结构设计和优化提供一定的指导.  相似文献   

19.
It is generally believed that CO2 electroreduction to multi‐carbon products such as ethanol or ethylene may be catalyzed with significant yield only on metallic copper surfaces, implying large ensembles of copper atoms. Here, we report on an inexpensive Cu‐N‐C material prepared via a simple pyrolytic route that exclusively feature single copper atoms with a CuN4 coordination environment, atomically dispersed in a nitrogen‐doped conductive carbon matrix. This material achieves aqueous CO2 electroreduction to ethanol at a Faradaic yield of 55 % under optimized conditions (electrolyte: 0.1 m CsHCO3, potential: ?1.2 V vs. RHE and gas‐phase recycling set up), as well as CO electroreduction to C2‐products (ethanol and ethylene) with a Faradaic yield of 80 %. During electrolysis the isolated sites transiently convert into metallic copper nanoparticles, as shown by operando XAS analysis, which are likely to be the catalytically active species. Remarkably, this process is reversible and the initial material is recovered intact after electrolysis.  相似文献   

20.
To date, copper is the only monometallic catalyst that can electrochemically reduce CO2 into high value and energy-dense products, such as hydrocarbons and alcohols. In recent years, great efforts have been directed towards understanding how its nanoscale structure affects activity and selectivity for the electrochemical CO2 reduction reaction (CO2RR). Furthermore, many attempts have been made to improve these two properties. Nevertheless, to advance towards applied systems, the stability of the catalysts during electrolysis is of great significance. This aspect, however, remains less investigated and discussed across the CO2RR literature. In this Minireview, the recent progress on understanding the stability of copper-based catalysts is summarized, along with the very few proposed degradation mechanisms. Finally, our perspective on the topic is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号