首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metamaterials are artificial materials structured on a subwavelength scale to provide electromagnetic properties beyond those available in nature. Progress in this young field has been startlingly swift. The last year alone has seen the realization of the first optical negative‐index metamaterials and the constructon of two very striking metamaterial‐based devices: an invisibility cloak and a far‐field lens capable of subwavelength imaging. Here, I review these developments and the key concepts that made them possible.  相似文献   

2.
Ben Wood   《Comptes Rendus Physique》2009,10(5):379-390
Metamaterials have significantly extended the range of electromagnetic properties available to device designers. An interesting application of these new materials is to the problem of cloaking, where the goal is to render an object invisible to electromagnetic radiation within a certain frequency range. Here, I review the concepts behind recently-proposed invisibility cloaks, and the way in which metamaterials can allow these designs to be realized. To cite this article: B. Wood, C. R. Physique 10 (2009).  相似文献   

3.
马晓亮  李雄  郭迎辉  赵泽宇  罗先刚 《物理学报》2017,66(14):147802-147802
自从电磁波被发现和应用以来,利用各种材料或者结构调节电磁波的辐射行为、构造高性能的电磁辐射器件一直是研究人员的追求目标.经过百余年的发展,电磁辐射器件的方向性提高、带宽拓展等技术逐渐达到瓶颈.受自然材料电磁特性的限制,微带天线、喇叭天线等传统电磁辐射器件存在体积重量大、工作带宽窄、无法快速动态调控等缺陷,难以满足日益发展的通信技术的需求.近年来出现的亚波长结构可在深度亚波长尺度下调控电磁波的传输行为,出现了多种奇异的电磁现象,完善了传统的电磁学理论,在一定程度上突破了传统材料电磁特性的限制,形成全新的电磁辐射技术,有效解决了传统天线存在的口径大、厚度高、带宽窄等难题,促进了电磁学、光子学、材料学等领域的发展.这种基于超构材料的新型天线可以被称为超构天线,具有高方向性、低副瓣、超宽带、可重构等传统天线难以实现的功能.本文主要回顾了近年来基于亚波长超构材料的超构天线技术的发展现状和取得的成果,介绍了超构材料在亚波长尺度下对电磁波振幅、相位、偏振态等的衍射调控机理,以及在此基础上形成的新型辐射器件,例如相控阵天线、高方向性天线、低雷达散射截面天线,基于亚波长结构的多种偏振调控器件及其在天线中的应用等.在衍射极限尺度下,这种亚波长结构的调控行为可有效提升电磁辐射器件的方向性、带宽,并可重构天线的工作频率、偏振态等性能.  相似文献   

4.
We investigate the dynamic characteristics of metamaterial systems, such as the temporal coherence gain of the superlens, the causality limitation on the ideal cloaking systems, the relaxation process and essential elements in the dispersive cloaking systems, and the extending of the working frequency range of cloaking systems. The key point of our study is the physical dispersive properties of metamaterials, which are well-known to be intrinsically strongly dispersive. With physical dispersion, new physical pictures can be obtained for the waves propagating inside metamaterial, such as the “group retarded time” for waves inside the superlens and cloak, the causality limitation on real metamaterial systems, and the essential elements for design optimization. Therefore, we believe the dynamic study of metamaterials will be an important direction for further research. All theoretical derivations and conclusions are demonstrated by powerful finite-difference time-domain simulations.  相似文献   

5.
In this review article, a brief introduction on the theory, experiments and applications of metamaterials is presented. The main focuses are concentrated on the composing meta-atoms, the method of transformation optics, the experimental demonstration of negative refraction, and the realizations of invisibility cloaks and electromagnetic black hole. At the end of this review, some typical applications of metamaterials, including high-performance antennas made of zero-refractive-index materials, inhomogeneous metamaterial lenses, and planar metasurfaces, are introduced in details.  相似文献   

6.
In this Letter we demonstrate, for the first time, selective thermal emitters based on metamaterial perfect absorbers. We experimentally realize a narrow band midinfrared (MIR) thermal emitter. Multiple metamaterial sublattices further permit construction of a dual-band MIR emitter. By performing both emissivity and absorptivity measurements, we find that emissivity and absorptivity agree very well as predicted by Kirchhoff's law of thermal radiation. Our results directly demonstrate the great flexibility of metamaterials for tailoring blackbody emission.  相似文献   

7.
Illusion optics     
The technique of “transformation optics” establishes a correspondence between coordinate transformation and material constitutive parameters. Most of the transformation optics mappings give metamaterials that have graded positive refractive indices that can steer light in curves defined by the coordinate transformation. We will focus on those “folded-geometry mappings” that give negative refractive index materials that have special wave scattering properties. One interesting example is a kind of remote illusion device that can transform the stereoscopic image of an object into the illusion of some other object of our choice. The conceptual device can create the illusion without touching or encircling the object. For any incident wave, the device transforms the scattered waves of the original object into that of the object chosen for illusion outside a virtual boundary. We will illustrate some possible applications of this type of metamaterial remote device, including “cloaking at a distance,” partial cloaking, cloaking from an embedded device, revealing a hidden object inside a container, turning the image of one object into that of another object, and seeing through a wall. The feasibility of building this remote illusion device by metamaterials will also be discussed.  相似文献   

8.
沈翔瀛  黄吉平 《物理》2013,42(03):170-180
由于光波、声波、地震波和水波都遵循波动方程,所以,2006年光学隐身衣(optical cloak)原理在Science 杂志上发表后,光学隐身衣的设想很快就从最初的光波推广到了声波、地震波和水波,至今方兴未艾。由于热传导满足的是扩散方程,并且波动方程与扩散方程在物理机制上迥异,这就使得把光学隐身衣推广到热学隐身衣的尝试不得不面临来自原理上的挑战,可能也正因为如此,国际上对热超构材料的研究非常缓慢:早在2008年,就有学者在光学隐身衣的启发下,通过有限元模拟,揭示了热学隐身衣和热流反转等反常热功能或热现象,从而提出热超构材料(thermal metamaterial)的概念,但是,直到2012年,这个概念才被实验验证。由于其中蕴含着巨大的潜在应用价值,该实验工作发表后,热超构材料开始得到国际同行的广泛关注。文章的主要目的就是向读者介绍这一类新型功能材料——热超构材料的物理原理、发展历程及其理论和实验研究进展。  相似文献   

9.
We present a design of an infrared cylindrical cloak using nanosphere dispersed nematic liquid crystal (NLC) metamaterial following the approach of Smith's group [Science 314, 977 (2006)]. Cloaking conditions require spatial distribution of liquid crystal birefringence with constant extraordinary index of refraction and radially dependent ordinary index of refraction. An approximate analytical formula for the latter is derived. Finite element (FE) simulations confirm the cloaking effect. Owing to the tunable birefringence of the liquid crystal component, such cloaking material offers the interesting possibilities of real-time control of invisibility. The possibility of experimental realization is briefly discussed.  相似文献   

10.
Metamaterials and their application in microwaves: A review   总被引:1,自引:0,他引:1  
A metamaterial is a composite material that has attracted the attention of researchers since the late 1990s-early 2000s. This material contains an artificial periodic structure, which modifies its permittivity and permeability and, thereby, makes it possible to control the dispersion, refraction, and reflection of electromagnetic waves in the metamaterial. Analytical and experimental studies of the properties of metamaterials, as well as their applications, cover a wide frequency range from radio waves to the visible range. In recent years, considerable progress has been made toward the application of these materials in the microwave range (1–100 GHz). Works on development and application of metamaterials in the microwave range published over the last 8–10 years are reviewed. Artificial transmission lines as 1D metamaterials are discussed. Resonators, filters, and phase shifters based on the “metamaterial philosophy” are considered. Special attention is given to the application of metamaterials in the antenna technology.  相似文献   

11.
A major limitation of current metamaterials is that they control the wave propagation depending on their structure. Active metamaterials in this paper are designed whose physical structure is fixed, yet the position where they control the wave propagation can be changed by piezoelectric conditions. Two kinds of lamp-type piezoelectric metamaterials were assembled from an aluminum base, rubber plate and steel column, the piezoelectric patches were attached on both sides of the steel column, which can change the equivalent elastic modulus of the whole structure when the pair of patches are accessed by an LC circuit. The equivalent elastic modulus becomes zero or negative when the frequency of the circuit varies between 29,000 Hz and 30,000 Hz, in this case the two kinds of lamp-type piezoelectric metamaterials behave as a wave localization and a wave guide, respectively. The advantage of the lamp-type piezoelectric metamaterials is that we can control the wave propagation actively, as long as we change the position of the piezoelectric patches or choose the kind of lamp-type piezoelectric metamaterial. This is more flexible than a traditional passive metamaterial and provides a new way for us to design some acoustic equipment, such as acoustic cloaking, an acoustic black hole, filter or wave guide.  相似文献   

12.
Invisibility, a long sought-for speculation in science fiction, has been turned into reality in the laboratory through the use of a theoretical technique called Transformation Optics. The principles of transformation optics show that any desired smooth deformation of the electromagnetic field can be implemented exactly by an appropriately engineered metamaterial. All demonstrations of cloaking to date have had limitations, however, reflecting our technological inability to implement the transformation optics algorithm exactly. However, the scientific principles leading to perfect invisibility are now established, and practical improvements on the initial designs are now occurring very rapidly. Most recently, researchers have re-examined transformation optics to include time as well as space, describing and then implementing the concept of a cloak that hides events, a conceptual breakout that promises many new applications. This review describes the general ideas underlying transformation optics, and how the various types of cloak based on these ideas have been implemented practically to date.  相似文献   

13.
太赫兹(THz)波,是指频率范围在0.1~10 THz的电磁波,在电磁波谱中处于红外与微波之间.太赫兹波的光子能量相对于可见光更低,1 THz对应的能量大约只有4.14 meV,意味着这将大大减少对生物体内组织器官的辐射而引起的伤害,不会对生物分子产生电离.因此,该波段在基础科学、人体安检、危险品检测、高速通信和医学成...  相似文献   

14.
Illusion optics     
The technique of “transformation optics” establishes a correspondence between coordinate transformation and material constitutive parameters. Most of the transformation optics mappings give metamaterials that have graded positive refractive indices that can steer light in curves defined by the coordinate transformation. We will focus on those “folded-geometry mappings” that give negative refractive index materials that have special wave scattering properties. One interesting example is a kind of remote illusion device that can transform the stereoscopic image of an object into the illusion of some other object of our choice. The conceptual device can create the illusion without touching or encircling the object. For any incident wave, the device transforms the scattered waves of the original object into that of the object chosen for illusion outside a virtual boundary. We will illustrate some possible applications of this type of metamaterial remote device, including “cloaking at a distance,” partial cloaking, cloaking from an embedded device, revealing a hidden object inside a container, turning the image of one object into that of another object, and seeing through a wall. The feasibility of building this remote illusion device by metamaterials will also be discussed.  相似文献   

15.
Metamaterials are engineered composite materials offering unprecedented control of wave propagation. Despite their complexity, effective properties can frequently be extracted by conceptualizing them as homogeneous and isotropic media with dispersive electric permittivity and magnetic permeability. For an ideal isotropic medium, strong dispersion in these properties causes wave and field vectors to form a left‐handed (E,H,k)‐frame involving backward waves, and offering control of quantities like the refractive index which may become negative. Experimental evidence exists from microwaves to the visible. Applications include sub‐wavelength‐resolution imaging, invisibility cloaking, plasmonics‐based lasers, metananocircuits, and omnidirectional absorbers. As the engineered sub‐structures must be smaller than their design wavelength, micro/nanomanufacturing is exploited from primary pattern generation over lithography to templating and molecular beam epitaxy. 3D metamaterials have been made by stacking of layers, multilayer structuring, and 3D primary pattern generation. Theory shows that full properties may build up over one or a very few layers.  相似文献   

16.
We demonstrated the possibility of designing super-thin electromagnetic cloaks based on spoof surface plasmon (SSP). Using a metamaterial layer, incident waves can be coupled into SSP efficiently at the air/metamaterial interface. Due to the strong surface confinement of SSP, EM waves are squeezed into and propagate in deep sub-wavelength scales. Implementation of an 8.2 GHz cloak less than 1/50 the cloaking diameter was presented using split ring resonator (SRR). Excellent cloaking effect was verified by simulations. Rather than isolating objects from the background, such cloaks can drastically enhance the field intensity around the cloaked object. This is of particular importance in applications such as weak wave detection and near-field sensing.  相似文献   

17.
Metamaterials’ properties may be quantified through the assignment of bulk material parameters such as magnetic permeability and electric permittivity. These assignments rely on the assumption that metamaterials are effective media, in this context meaning that their electromagnetic properties are independent of the sample size. This assumption is not always valid, particularly for metafilms, the surface equivalents of metamaterials. However, metamaterials comprised of numerous metafilm and dielectric layers can be uniquely characterized in the effective medium approximation when all aspects of the metamaterial are properly integrated. We present a simple model based on stratified systems to illustrate this fact. The model further assists in the interpretation of novel metamaterial behaviors and offers a rapid and accurate method to determine the functionality of bulk metamaterial-based devices.  相似文献   

18.
徐新河  刘鹰  甘月红  刘文苗 《物理学报》2015,64(4):44101-044101
单负(仅介电常数或仅磁导率小于零)超材料以及由导线-开口谐振环组成的双负超材料本构参数的提取通常采用传统的S参数方法. 由于磁电耦合超材料存在交叉极化现象, 仅用介电常数和磁导率两个本构参数无法准确描述其电磁特性. 传统的S参数提取方法一开始就假定超材料仅具有介电常数和磁导率两个本构参数, 所以采用该方法提取磁电耦合超材料本构参数存在明显局限性. 将磁电耦合超材料中的电元件和磁元件分别等效为面电流和面磁流, 通过推导平均电通密度和磁通密度与外加电磁场的相互关系, 从理论上获取了磁电耦合超材料2×2 的本构参数矩阵, 确定了磁电耦合超材料这四个本构参数与磁元件的磁导率、电元件的介电常数、空间色散项和耦合系数之间的关系解析公式, 进而获得了折射率理论计算公式. 利用该折射率公式对折射率提取值进行了非线性拟合, 发现提取值和理论值之间的误差很小, 这个结果很好地验证了所给出的本构矩阵解析式和折射率公式的正确性. 根据拟合结果, 获得了磁电耦合超材料本构矩阵中四个电磁参数的频率响应曲线. 所提出的磁电耦合超材料本构矩阵参数获取方法将为研究磁电超材料中电元件和磁元件的耦合现象提供重要的理论参考.  相似文献   

19.
Here, a two-dimensional (2D) hole-type square lattice photonic crystal is shown to achieve invisibility cloaking based on all-angle self-collimation. The proposed structure, which is composed of the high-refraction-index dielectric material PbTe (nPbTe ≈ 6), is applicable in the mid-infrared (mid-IR) frequency range. The cloaking region is capable of hiding any object of any shape and size since the incoming wave does not interact with the cloaked object. The optimization process and the functionality of the proposed structure are investigated by equal frequency contour analysis and the finite difference time domain (FDTD) method.  相似文献   

20.
Plasmonic metamaterials form an exciting new class of engineered media that promise a range of important applications, such as subwavelength focusing, cloaking and slowing/stopping of light. Recently it has been shown that the internal losses due to the natural absorption of metals at optical frequencies can be compensated by gain. Here, we employ a Maxwell–Bloch methodology which allows us to study the dynamics of the coherent plasmon-gain interaction, nonlinear saturation, field enhancement and radiative damping. Using numerical pump-probe experiments on a double-fishnet metamaterial with dye-molecule inclusions we investigate the buildup of the inversion and the formation of the plasmonic modes in the low-Q fishnet cavity. We find that loss compensation occurs in the negative-refractive-index regime and that, due to the loss compensation and the associated sharpening of the resonance, the real part of the refractive index of the metamaterial becomes more negative compared to the passive case. Furthermore, we investigate the behavior of the metamaterial above the lasing threshold, and we identify the occurrence of a far-field lasing burst and gain depletion. Our results provide deep insight into the internal processes that affect the macroscopic properties of active metamaterials. This could guide the development of amplifying and lasing plasmonic nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号