首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A diradical approach to obtain stable organic dyes with intense absorption around λ=1100 nm is reported. The para‐ and meta‐quinodimethane‐bridged BODIPY dimers BD‐1 and BD‐2 were synthesized and were found to have a small amount of diradical character. These molecules exhibited very intense absorption at λ=1088 nm (?=6.65×105 M ?1 cm?1) and 1136 nm (?=6.44×105 M ?1 cm?1), respectively, together with large two‐photon‐absorption cross‐sections. Structural isomerization induced little variation in their diradical character but distinctive differences in their physical properties. Moreover, the compounds showed a selective fluorescence turn‐on response in the presence of the hydroxyl radical but not with other reactive oxygen species.  相似文献   

2.
A diphosphine chelate ligand with a wide and flexible bite angle, a unique stereochemical environment, and redox‐active and ambiphilic character is reported. Initially generated as its HgCl2 complex by reaction of 1,2‐fc(PPh2)(SnMe3) (fc=ferrocenediyl) with HgCl2 in acetone, treatment with [n‐Bu4N]CN readily liberates the free chiral bidentate ligand. An intermolecular ClHg−Cl→Hgfc2 (2.9929(13) Å) interaction that is unprecedented in ambiphilic ligand chemistry is seen in the solid structure of Hg(fcPPh2)2⋅HgCl2 where the bridging mercury atom acts as a σ‐acceptor. Furthermore, a bis‐[Rh(COD)Cl] complex is introduced, which displays relatively short Rh⋅⋅⋅Hg contacts of 3.4765(5) and 3.4013(1) Å. Wiberg indices of 0.12 are determined for these Rh⋅⋅⋅Hg interactions and an AIM analysis reveals bond paths with an electron density ρ(r) of 1.2×10−2 and 1.4×10−2 e/a03 at the bond critical points.  相似文献   

3.
The synthesis of a bithiophene‐bridged 34π conjugated aromatic expanded porphycene 1 and a cyclopentabithiophene bridged 32π conjugated anti‐aromatic expanded porphycene 2 by a McMurry coupling strategy is presented. Magnetic measurements and theoretical calculations reveal that both 1 and 2 exhibit an open‐shell singlet ground state with significant radical character (y0=0.63 for 1 ; y0=0.68, y1=0.18 for 2 ; y0: diradical character, y1: tetraradical character) and a small singlet–triplet energy gap (ΔES‐T=?3.25 kcal mol?1 for 1 and ΔES‐T=?0.92 kcal mol?1 for 2 ). Despite the open‐shell radical character, both compounds display exceptional stability under ambient air and light conditions owing to effective delocalization of unpaired electrons in the extended cyclic π‐conjugation pathway.  相似文献   

4.
Of the five possible indenofluorene regioisomers, examples of a fully conjugated indeno[1,2‐a ]fluorene scaffold have so far remained elusive. This work reports the preparation and characterization of 7,12‐dimesitylindeno[1,2‐a ]fluorene as a highly reactive species. Experimental and computational data support the notion of a molecule with pronounced diradical character that exists in a triplet ground state. As such, both NICS and ACID calculations suggest that the indeno[1,2‐a ]fluorene scaffold is weakly Baird aromatic. Reduction of the unstable red solid with Cs metal produces the dianion of the title compound, from which single crystals could be obtained and X‐ray data acquired, thus fully corroborating the proposed indeno[1,2‐a ]fluorene hydrocarbon core.  相似文献   

5.
A complete experimental and theoretical study has been carried out for aromatic and quinoidal perylene‐based bridges substituted with bis(diarylamine) and bis(arylimine) groups respectively. The through‐bridge inter‐redox site electronic couplings (VAB) have been calculated for their respective mixed‐valence radical cation and radical anion species. The unusual similitudes of the resulting VAB values for the given structures reveal the intervention of molecular shapes with balanced semi‐quinoidal/semi‐aromatic structures in the charge delocalization. An identical molecular object equally responding to the injection of either positive or negative charges is rare in the field of organic π‐conjugated molecules. However, once probed herein for perylene‐based systems, it can be extrapolated to other π‐conjugated bridges. As a result, this work opens the door to the rational design of true ambipolar bulk and molecular conductors.  相似文献   

6.
To reveal new structure–property relationships in the nonlinear optical (NLO) properties of fullerenes that are associated with their open‐shell character, we investigated the interplay between the diradical character (yi) and second hyperpolarizability (longitudinal component, γzzzz) in several fullerenes, including C20 , C26 , C30 , C36 , C40 , C42 , C48 , C60 , and C70 , by using the broken‐symmetry density functional theory (DFT; LC‐UBLYP (μ=0.33)/6‐31G*//UB3LYP/6‐31G*). We found that the large differences between the geometry and topology of fullerenes have a significant effect on the diradical character of each fullerene. On the basis of their different diradical character, these fullerenes were categorized into three groups, that is, closed‐shell (yi=0), intermediate open‐shell (0<yi<1), and almost pure open‐shell compounds (yi?1), which originated from their diverse topological features, as explained by odd‐electron‐density and spin‐density diagrams. For example, we found that closed‐shell fullerenes include C20 , C60 , and C70 , whereas fullerenes C26 and C36 and C30 , C40 , C42 , and C48 are pure and intermediate open‐shell compounds, respectively. Interestingly, the γzzzz enhancement ratios between C30 / C36 and C40 / C60 are 4.42 and 11.75, respectively, regardless of the smaller π‐conjugation size in C30 and C40 than in C36 and C60 . Larger γzzzz values were obtained for other fullerenes that had intermediate diradical character, in accordance with our previous valence configuration interaction (VCI) results for the two‐site diradical model. The γzzzz density analysis shows that the large positive contributions originate from the large γzzzz density distributions on the right‐ and left‐extended edges of the fullerenes, between which significant spin polarizations (related to their intermediate diradical character) appear within the spin‐unrestricted DFT level of theory.  相似文献   

7.
A series of 6π‐electron 4‐center species, E2N2 and E42+ (E=S, Se, Te) is studied by means of ab initio valence bond methods with the aims of settling some controversies on 1) the diradical character of these molecules and 2) the radical sites, E or N, of the preferred diradical structure. It was found that for all molecules, the cumulated weights of the two possible diradical structures are always important and close to 50 %, making these molecules comparable to ozone in terms of diradical character. While the two diradical structures are degenerate in the E42+ dications, they have on the contrary strongly unequal weights in the E2N2 neutral molecules. In these three molecules, the electronic structure is dominated by one diradical structure, in which the radical sites are the two nitrogen atoms, while the other diradical structure is much less important. The ordering of the various VB structures in terms of their calculated weights is confirmed by the relative energies of individual VB structures. In all cases, the major diradical structure (or both diradical structures when they are degenerate) is (are) the lowest one(s), while the covalent VB structures lie higher in energy. The vertical resonance energies are considerable in S2N2 and S42+, about 80 % of the estimated value for benzene, and diminish as one goes down the periodic table (S→Se→Te). This confirms the aromatic character of these species, as already demonstrated for S2N2 on the basis of magnetic criteria. This and the high weights and stabilities of one or both diradical structures in all systems indicates that aromaticity and diradical character do not exclude each other, contrary to what is usually claimed. Furthermore, it is shown that the diradical structures find their place in a collective electron flow responsible for the ring currents in the π system of these species.  相似文献   

8.
meta‐ and para‐Phenylenediamine‐fused nickel(II) porphyrin dimers were synthesized by SNAr reaction of meso,β,β‐trichloro nickel(II) porphyrin with meta‐ and para‐phenylenediamines and subsequent Pd‐catalyzed intramolecular C?H arylation. Their tetrachlorinated dication diradicals are very stable, allowing SQUID magnetometry and revealing clear open‐shell characters for both meta and para isomers with ferro‐ and anti‐ferromagnetic interactions, respectively. The nitrogen analogue of Thiele's hydrocarbon usually displays predominant closed‐shell nature but its hidden diradical characters increase either in a twisted conformation or upon insertion of an additional phenylene spacer. The observed distinct diradical nature of the para‐congener indicates that diradical properties can be enhanced also by efficient spin delocalization.  相似文献   

9.
We computationally design a series of azobenzene (AB)‐bridged double radicalized nucleobases, a novel kind of diradical Janus‐type nucleobases, and explore their spin coupling characteristics. Calculations prove that such diradical Janus‐bases not only normally match with their complementary bases, but also exhibit well‐defined diradical character with photo‐convertible intramolecular magnetic couplings (antiferromagnetic vs. ferromagnetic). Combination of four radical nucleobases (rG, rA, rC, rT) and photoswitch AB can yield 10 diradical Janus‐bases with different magnetic characteristics in which AB functions a bridge to mediate the spin coupling between two radical bases. The trans‐form supports mild antiferromagnetic couplings with the spin coupling constants (J) ranging from −153.6 cm−1 to −50.91 cm−1 while the cis‐form has weak magnetic couplings with ferromagnetic (0.22–8.50 cm−1) for most of them or antiferromagnetic (−0.77, −1.73, −3.30 cm−1) properties for only three. Further structural examination and frontier molecular orbital analyses indicate that the extended π conjugation for better spin polarization provides an effective through‐π‐bond pathway to mediate the spin coupling in the trans conformation while nonplanarity of the cis conformation weakens the through‐bond coupling and causes a competitive through‐space pathway and as an overall result inhibits the spin coupling between two spin moieties. Meanwhile, we also find that the J values of the cis conformation vary with their angle between the radical base and its linked phenylene. Furthermore, the magnetic properties of the diradical Janus‐bases can be significantly increased by interacting with metal ions. They also maintain a good UV absorption characteristics and there is a clear redshift compared with AB. This work provides a promising strategy for the rational design of photo‐convertible Janus‐base magnets as the magnetism‐tunable DNA building blocks. © 2018 Wiley Periodicals, Inc.  相似文献   

10.
A stable 5,10‐bis(9‐fluorenylidene)porphyrin (Por‐Fl) diradicaloid was synthesized. It shows a quinoidal, saddle‐shaped geometry in the single crystal but can be thermally populated to a triplet diradical both in solution and in the solid state. Coordination with the Ni2+ ion (Por‐Fl‐Ni) does not significantly change the contorted conformation but reduces the singlet–triplet gap. Heat‐induced geometric change can explain the observed paramagnetic properties as well as unusual hysteresis in SQUID measurements. On the other hand, protonation (Por‐Fl‐2H+) dramatically changes the conformation while maintains the closed‐shell electronic structure. Our studies demonstrate how heat, coordination, and protonation affect the geometry, diradical character, and physical properties of conformationally flexible open‐shell singlet diradicaloids.  相似文献   

11.
A series of bis[N,N‐di‐(4‐methoxylphenyl)amino]arene dications 1 2+– 3 2+ have been synthesized and characterized. Their electronic structures were investigated by various experiments assisted by theoretical calculations. It was found that they are singlets in the ground state and that their diradical character is dependent on the bridging moiety. 3 2+ has a smaller singlet–triplet energy gap and its excited triplet state is thermally readily accessible. The work provides a nitrogen analogue of Thiele’s hydrocarbon with considerable diradical character.  相似文献   

12.
A general method for the oxidative substitution of nido‐carborane (7,8‐C2B9H12?) with N‐heterocycles has been developed by using 2,3‐dichloro‐5,6‐dicyanobenzoquinone (DDQ) as an oxidant. This metal‐free B?N coupling strategy, in both inter‐ and intramolecular fashions, gave rise to a wide array of charge‐compensated, boron‐substituted nido‐carboranes in high yields (up to 97 %) with excellent functional‐group tolerance under mild reaction conditions. The reaction mechanism was investigated by density‐functional theory (DFT) calculations. A successive single‐electron transfer (SET), B?H hydrogen‐atom transfer (HAT), and nucleophilic attack pathway is proposed. This method provides a new approach to nitrogen‐containing carboranes with potential applications in medicine and materials.  相似文献   

13.
New complexes with six ferrocenyl (Fc) groups connected to ZnII or CdII tris(2,2′‐bipyridyl) cores are described. A thorough characterisation of their BPh4? salts includes two single‐crystal X‐ray structures, highly unusual for such species with multiple, extended substituents. Intense, visible d(FeII)→π* metal‐to‐ligand charge‐transfer (MLCT) bands accompany the π→π* intraligand charge‐transfer absorptions in the near UV region. Each complex shows a single, fully reversible FeIII/II wave when probed electrochemically. Molecular quadratic nonlinear optical (NLO) responses are determined by using hyper‐Rayleigh scattering and Stark spectroscopy. The latter gives static first hyperpolarisabilities β0 reaching as high as approximately 10?27 esu and generally increasing with π‐conjugation extension. Z‐scan cubic NLO measurements reveal high two‐photon absorption cross‐sections σ2 of up to 5400 GM in one case. DFT calculations reproduce the π‐conjugation dependence of β0, and TD‐DFT predicts three transitions close in energy contributing to the MLCT bands. The lowest energy transition has octupolar character, whereas the other two are degenerate and dipolar in nature.  相似文献   

14.
By using spin‐unrestricted density functional theory methods, the relationship between the diradical character y and the second hyperpolarizability γ (the third‐order nonlinear optical (NLO) properties at the molecular scale) for four‐membered‐ring diradical compounds, that is, cyclobutane‐1,3‐diyl, Niecke‐type diradicals, and Bertrand‐type diradicals, were investigated by focusing on the substitution effects of heavy main‐group elements as well as of donor/acceptor groups on the y and γ values. It has been found that i) γ is enhanced in the intermediate y region for these four‐membered‐ring diradicals, ii) Niecke‐type diradicals with intermediate y values, which are realized by tuning the combination of the main‐group elements involved, exhibit larger γ values than Bertrand‐type diradicals, and iii) the y value and thus γ value can be controlled by modifying the both‐end donor/acceptor substituents attached to carbon atoms in Nicke‐type C2P2 diradicals. These results demonstrate that four‐membered‐ring diradicals involving heavy main‐group elements exhibit high controllability of the y and γ, which indicates the potential applications of four‐membered‐ring diradicals as a building block of highly efficient open‐shell NLO materials.  相似文献   

15.
Peri‐acenes are good model compounds for zigzag graphene nanoribbons, but their synthesis is extremely challenging owing to their intrinsic open‐shell diradical character. Now, the successful synthesis and isolation of a stable peri‐tetracene derivative PT‐2ClPh is reported; four 2,6‐dichlorophenyl groups are attached onto the most reactive sites along the zigzag edges. The structure was confirmed by X‐ray crystallographic analysis and its electronic properties were systematically investigated by both experiments and theoretical calculations. It exhibits an open‐shell singlet ground state with a moderate diradical character (y0=51.5 % by calculation) and a small singlet–triplet gap (ΔES‐T=?2.5 kcal mol?1 by SQUID measurement). It displays global aromatic character, which is different from the smaller‐size bisanthene analogue BA‐CF3 .  相似文献   

16.
Trimethylenemethane (TMM) diradical is the simplest non‐Kekulé non‐disjoint molecule with the triplet ground state (ΔEST=+16.1 kcal mol?1) and is extremely reactive. It is a challenge to design and synthesize a stable TMM diradical with key properties, such as actual aliphatic TMM diradical centers and the triplet ground state with a large positive ΔEST value, since such species provide detailed information on the electronic structure of TMM diradical. Herein we report a TMM derivative, in which the TMM segment is fused with three NiII meso‐triarylporphyrins, that satisfies the above criteria. The diradical shows delocalized spin density on the propeller‐like porphyrin π‐network and the triplet ground state owing to the strong ferromagnetic interaction. Despite the apparent TMM structure, the diradical can be handled under ambient conditions and can be stored for months in the solid state, thus allowing its X‐ray diffraction structural analysis.  相似文献   

17.
A set of three donor‐acceptor conjugated (D‐A) copolymers were designed and synthesized via Stille cross‐coupling reactions with the aim of modulating the optical and electronic properties of a newly emerged naphtho[1,2‐b:5,6‐b′]dithiophene donor unit for polymer solar cell (PSCs) applications. The PTNDTT‐BT , PTNDTT‐BTz , and PTNDTT‐DPP polymers incorporated naphtho[1,2‐b:5,6‐b′]dithiophene ( NDT ) as the donor and 2,2′‐bithiazole ( BTz ), benzo[1,2,5]thiadiazole ( BT ), and pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione ( DPP ), as the acceptor units. A number of experimental techniques such as differential scanning calorimetry, thermogravimetry, UV–vis absorption spectroscopy, cyclic voltammetry, X‐ray diffraction, and atomic force microscopy were used to determine the thermal, optical, electrochemical, and morphological properties of the copolymers. By introducing acceptors of varying electron withdrawing strengths, the optical band gaps of these copolymers were effectively tuned between 1.58 and 1.9 eV and their HOMO and LUMO energy levels were varied between ?5.14 to ?5.26 eV and ?3.13 to ?3.5 eV, respectively. The spin‐coated polymer thin film exhibited p‐channel field‐effect transistor properties with hole mobilities of 2.73 × 10?3 to 7.9 × 10?5 cm2 V?1 s?1. Initial bulk‐heterojunction PSCs fabricated using the copolymers as electron donor materials and [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) as the acceptor resulted in power conversion efficiencies in the range of 0.67–1.67%. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2948–2958  相似文献   

18.
A new phosphorescent dinuclear cationic iridium(III) complex ( Ir1 ) with a donor–acceptor–π‐bridge–acceptor–donor (D? A? π? A? D)‐conjugated oligomer ( L1 ) as a N^N ligand and a triarylboron compound as a C^N ligand has been synthesized. The photophysical and excited‐state properties of Ir1 and L1 were investigated by UV/Vis absorption spectroscopy, photoluminescence spectroscopy, and molecular‐orbital calculations, and they were compared with those of the mononuclear iridium(III) complex [Ir(Bpq)2(bpy)]+PF6? ( Ir0 ). Compared with Ir0 , complex Ir1 shows a more‐intense optical‐absorption capability, especially in the visible‐light region. For example, complex Ir1 shows an intense absorption band that is centered at λ=448 nm with a molar extinction coefficient (ε) of about 104, which is rarely observed for iridium(III) complexes. Complex Ir1 displays highly efficient orange–red phosphorescent emission with an emission wavelength of 606 nm and a quantum efficiency of 0.13 at room temperature. We also investigated the two‐photon‐absorption properties of complexes Ir0 , Ir1 , and L1 . The free ligand ( L1 ) has a relatively small two‐photon absorption cross‐section (δmax=195 GM), but, when complexed with iridium(III) to afford dinuclear complex Ir1 , it exhibits a higher two‐photon‐absorption cross‐section than ligand L1 in the near‐infrared region and an intense two‐photon‐excited phosphorescent emission. The maximum two‐photon‐absorption cross‐section of Ir1 is 481 GM, which is also significantly larger than that of Ir0 . In addition, because the strong B? F interaction between the dimesitylboryl groups and F? ions interrupts the extended π‐conjugation, complex Ir1 can be used as an excellent one‐ and two‐photon‐excited “ON–OFF” phosphorescent probe for F? ions.  相似文献   

19.
Cyanuric acid (C3H3N3O3) is widely used as cross‐linker in basic polymers (often in combination with other crosslinking agents like melamine) but also finds application in more sophisticated materials such as in supramolecular assemblies and molecular sheets. The unknown phosphorus analogue of cyanuric acid, P3C3(OH)3, may become an equally useful building block for phosphorus‐based polymers or materials which have unique properties. 1 Herein we describe a straightforward synthesis of 2,4,6‐tri(hydroxy)‐1,3,5‐triphosphinine and its derivatives P3C3(OR)3 which have been applied as strong π‐acceptor η6‐ligands in piano stool Mo(CO)3 complexes.  相似文献   

20.
Quinoidal azaacenes with almost pure diradical character (y=0.95 to y=0.99) were synthesized. All compounds exhibit paramagnetic behavior investigated by EPR and NMR spectroscopy, and SQUID measurements, revealing thermally populated triplet states with an extremely low‐energy gap ΔEST′ of 0.58 to 1.0 kcal mol?1. The species are persistent in solution (half‐life≈14–21 h) and in the solid state they are stable for weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号