首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low‐toxicity, air‐stable bismuth‐based perovskite materials are attractive substitutes for lead halide perovskites in photovoltaic and optoelectronic devices. The structural, optical, and electrical property changes of zero‐dimensional perovskite Cs3Bi2I9 resulting from lattice compression is presented. An emission enhancement under mild pressure is attributed to the increase in exciton binding energy. Unprecedented band gap narrowing originated from Bi−I bond contraction, and the decrease in bridging Bi‐I‐Bi angle enhances metal halide orbital overlap, thereby breaking through the Shockley–Queisser limit under relatively low pressure. Pressure‐induced structural evolutions correlate well with changes in optical properties, and the changes are reversible upon decompression. Considerable resistance reduction implies a semiconductor‐to‐conductor transition at ca. 28 GPa, and the final confirmed metallic character by electrical experiments indicates a wholly new electronic property.  相似文献   

2.
The double perovskite family, A2MIMIIIX6, is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH3NH3PbI3. Given the generally large indirect band gap within most known double perovskites, band‐gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs2AgBiBr6 as host, band‐gap engineering through alloying of InIII/SbIII has been demonstrated in the current work. Cs2Ag(Bi1−x Mx )Br6 (M=In, Sb) accommodates up to 75 % InIII with increased band gap, and up to 37.5 % SbIII with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs2Ag(Bi0.625Sb0.375)Br6. Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three‐metal systems are also assessed.  相似文献   

3.
Two‐dimensional (2D) layered hybrid perovskites have shown great potential in optoelectronics, owing to their unique physical attributes. However, 2D hybrid perovskite ferroelectrics remain rare. The first hybrid ferroelectric with unusual 2D multilayered perovskite framework, (C4H9NH3)2(CH3NH3)2Pb3Br10 ( 1 ), has been constructed by tailored alloying of the mixed organic cations into 3D prototype of CH3NH3PbBr3. Ferroelectricity is created through molecular reorientation and synergic ordering of organic moieties, which are unprecedented for the known 2D multilayered hybrid perovskites. Single‐crystal photodetectors of 1 exhibit fascinating performances, including extremely low dark currents (ca. 10−12 A), large on/off current ratios (ca. 2.5×103), and very fast response rate (ca. 150 μs). These merits are superior to integrated detectors of other 2D perovskites, and compete with the most active CH3NH3PbI3.  相似文献   

4.
Low‐toxicity, air‐stable bismuth‐based perovskite materials are attractive substitutes for lead halide perovskites in photovoltaic and optoelectronic devices. The structural, optical, and electrical property changes of zero‐dimensional perovskite Cs3Bi2I9 resulting from lattice compression is presented. An emission enhancement under mild pressure is attributed to the increase in exciton binding energy. Unprecedented band gap narrowing originated from Bi?I bond contraction, and the decrease in bridging Bi‐I‐Bi angle enhances metal halide orbital overlap, thereby breaking through the Shockley–Queisser limit under relatively low pressure. Pressure‐induced structural evolutions correlate well with changes in optical properties, and the changes are reversible upon decompression. Considerable resistance reduction implies a semiconductor‐to‐conductor transition at ca. 28 GPa, and the final confirmed metallic character by electrical experiments indicates a wholly new electronic property.  相似文献   

5.
The synthesis of previously unknown perovskite (CH3NH3)2PdCl4 is reported. Despite using an organic cation with the smallest possible alkyl group, a 2D organic–inorganic layered Pd‐based perovskites was still formed. This demonstrates that Pd‐based 2D perovskites can be obtained even if the size of the organic cation is below the size limit predicted by the Goldschmidt tolerance‐factor formula. The (CH3NH3)2PdCl4 phase has a bulk resistivity of 1.4 Ω cm, a direct optical gap of 2.22 eV, and an absorption coefficient on the order of 104 cm?1. XRD measurements suggest that the compound is moderately stable in air, an important advantage over several existing organic–inorganic perovskites that are prone to phase degradation problems when exposed to the atmosphere. Given the recent interest in organic–inorganic perovskites, the synthesis of this new Pd‐based organic–inorganic perovskite may be helpful in the preparation and understanding of other organic–inorganic perovskites.  相似文献   

6.
Two pseudohalide thiocyanate ions (SCN?) have been used to replace two iodides in CH3NH3PbI3, and the resulting perovskite material was used as the active material in solar cells. In accelerated stability tests, the CH3NH3Pb(SCN)2I perovskite films were shown to be superior to the conventional CH3NH3PbI3 films as no significant degradation was observed after the film had been exposed to air with a relative humidity of 95 % for over four hours, whereas CH3NH3PbI3 films degraded in less than 1.5 hours. Solar cells based on CH3NH3Pb(SCN)2I thin films exhibited an efficiency of 8.3 %, which is comparable to that of CH3NH3PbI3 based cells fabricated in the same way.  相似文献   

7.
Polycrystalline Sr2ZnWO6 is prepared by staged calcination of stoichiometric amounts of SrCO3, ZnO, and WO3 in air (Al2O3 crucible, 1.  相似文献   

8.
A remarkable PL enhancement by 12 fold is achieved using pressure to modulate the structure of a recently developed 2D perovskite (HA)2(GA)Pb2I7 (HA=n‐hexylammonium, GA=guanidinium). This structure features a previously unattainable, extremely large cage. In situ structural, spectroscopic, and theoretical analyses reveal that lattice compression under a mild pressure within 1.6 GPa considerably suppresses the carrier trapping, leading to significantly enhanced emission. Further pressurization induces a non‐luminescent amorphous yellow phase, which is retained and exhibits a continuously increasing band gap during decompression. When the pressure is released to 1.5 GPa, emission can be triggered by above‐band gap laser irradiation, accompanied by a color change from yellow to orange. The obtained orange phase could be retained at ambient conditions and exhibits two‐fold higher PL emission compared with the pristine (HA)2(GA)Pb2I7.  相似文献   

9.
10.
11.
A hydrothermal reaction of iron acetylacetonate, phosphoric acid, HF, N, N′‐bis(3‐aminopropyl)ethylenediamine and water at 150 °C gave rise to a new iron phosphate, [H3N(CH2)3NH2(CH2)2NH2(CH2)3NH3][Fe3F6(HPO4)2(PO4)] · 3H2O ( I ). The structure consists of Fe(1)O4F2, Fe(2)O3F3 octahedral and P(1)O3(OH) and P(2)O4 tetrahedral building units connected through their vertices to form fragments of tancoite‐type units. The tancoite‐type units are linked through the phosphate tetrahedra forming an unusual iron phosphate with a hitherto unknown low‐dimensional structure with three‐iron center.Magnetic studies indicate a complex behavior at low temperature and the high‐temperature data (150 — 300 K) has a Curie‐Weiss behavior. The calculated room temperature magnetic moment is 6 μB per Fe atom, and the Neel temperature, TN = 46K. Crystal data: orthorhombic, space group = I212121 (no. 24), a = 9.9042(11), b = 12.8865(14), c = 19.783(2)Å, U = 2524.9(5), Z = 4.  相似文献   

12.
A high‐performance 2D photodetector based on a bilayer structure comprising a WSe2 monolayer and CH3NH3PbI3 organolead halide perovskite is reported. High performance is realized by modification of the WSe2 monolayer with laser healing and perovskite functionalization. After modification, the output of the device was three orders of magnitude better than the pristine device; the performance is superior to that of most of the 2D photodetectors based on transition‐metal‐dichalcogenides (TMDs). This result indicates that combinatory TMDs–halide perovskite hybrids can be promising building blocks in optoelectronics.  相似文献   

13.
Inorganic–organic hybrid perovskites, especially two‐dimensional (2D) layered halide perovskites, have attracted significant attention due to their unique structures and attractive optoelectronic properties, which open up a great opportunity for next‐generation photosensitive devices. Herein, we report a new 2D bilayered inorganic–organic hybrid perovskite, (C6H13NH3)2(NH2CHNH2)Pb2I7 ( HFA , where C6H13NH3+ is hexylaminium and NH2CHNH2+ is formamidinium), which exhibits a remarkable photoresponse under broadband light illumination. Structural characterizations demonstrate that the 2D perovskite structure of HFA is constructed by alternant stacking of inorganic lead iodide bilayered sheets and organic hexylaminium layers. Optical absorbance measurements combined with density functional theory (DFT) calculations suggest that HFA is a direct band gap semiconductor with a narrow band gap (Eg) of ≈2.02 eV. Based on these findings, photodetectors based on HFA crystal wafer are fabricated, which exhibit fascinating optoelectronic properties including large on/off current ratios (over 103), fast response speeds (τrise=310 μs and τdecay=520 μs) and high responsivity (≈0.95 mA W?1). This work will contribute to the design and development of new two‐dimensional bilayer inorganic–organic hybrid perovskites for high‐performance photosensitive devices.  相似文献   

14.
Methylamine‐induced thin‐film transformation at room‐temperature is discovered, where a porous, rough, polycrystalline NH4PbI3 non‐perovskite thin film converts stepwise into a dense, ultrasmooth, textured CH3NH3PbI3 perovskite thin film. Owing to the beneficial phase/structural development of the thin film, its photovoltaic properties undergo dramatic enhancement during this NH4PbI3‐to‐CH3NH3PbI3 transformation process. The chemical origins of this transformation are studied at various length scales.  相似文献   

15.
Low‐dimensional lead halide perovskite materials recently have drawn much attention owing to the intriguing broadband emissions; however, the toxicity of lead will hinder their future development. Now, a lead‐free (C4H14N2)2In2Br10 single crystal with a unique zero‐dimensional (0D) structure constituted by [InBr6]3? octahedral and [InBr4]? tetrahedral units is described. The single crystal exhibits broadband photoluminescence (PL) that spans almost the whole visible spectrum with a lifetime of 3.2 μs. Computational and experimental studies unveil that an excited‐state structural distortion in [InBr6]3? octahedral units enables the formation of intrinsic self‐trapped excitons (STEs) and thus contributing the broad emission. Furthermore, femtosecond transient absorption (fs‐TA) measurement reveals that the ultrafast STEs formation together with an efficient intersystem crossing has made a significant contribution to the long‐lived and broad STE‐based emission behavior.  相似文献   

16.
17.
A hydrothermal reaction of a mixture of ZnO, HCl, ethylenediphosphonic acid, ethylenediamine, acetic acid in a water, THF mixture gave rise to a new three‐dimensional zinc ethylenediphosphonate, [NH3(CH2)2NH3][Zn3{O3P(CH2)2}4], I . The structure, determined by single crystal X‐ray diffraction, (monoclinic, space group = C2/c, a = 16.9948(14), b = 6.7383(6), c = 16.8886(14)Å, β = 1113.568(1)°, V = 1772.7(3)Å3, Z = 4, R1 = 0.0227, wR2 = 0.0601), consists of a network of strictly alternating ZnO4 and PO3C tetrahedral units linked through their vertices forming the three‐dimensional structure. The amine molecules occupy the middle of the 8‐membered channels and interact with the framework through the hydrogen bonds. Unlike other zinc diphosphonates, I appear to have close similarity to zinc phosphate structures reported in the literature. To our knowledge, this is the first three‐dimensional zinc diphosphonate prepared in the presence of an organic amine molecule.  相似文献   

18.
A niccolite series of [bnH22+][M(HCOO)3]2 (bnH22+=1,4‐butyldiammonium) shows four kinds of metal‐dependent phase transitions, from high temperature para‐electric phases to low‐temperature ferro‐, antiferro‐, glass‐like, and para‐electric phases. The conformational flexibility of bnH22+ and the different size, mass, and bonding character of the metal ion lead to various disorder‐order transitions of bnH22+ in the lattice and relevant framework modulations, thus different phase transitions and dielectric responses. The magnetic members display a coexistence or combination of electric and magnetic orderings in the low‐temperature region.  相似文献   

19.
20.
The A‐site mixed‐ammonium solid solutions of metal–organic perovskites [(NH2NH3)x(CH3NH3)1?x][Mn(HCOO)3] (x=1.00–0.67) exhibit para‐ to ferroelectric diffuse phase transitions with lowered transition temperatures from x=1.00 to 0.67. These properties are due to the decreased framework distortion and polarization in their low temperature ferroelectric phases caused by the increased CH3NH3+ concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号