首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A method is proposed to produce nanoparticles dispersible and recyclable in any class of solvents, and the concept is illustrated with the carbon nanotubes. Classically, dispersions of CNTs can be achieved through steric stabilization induced by adsorbed or grafted polymer chains. Yet, the surface modification of CNTs surfaces is irreversible, and the chemical nature of the polymer chains imposes the range of solvents in which CNTs can be dispersed. To address this limitation, supramolecular bonds can be used to attach and to detach polymer chains from the surface of CNTs. The reversibility of supramolecular bonds offers an easy way to recycle CNTs as well as the possibility to disperse the same functional CNTs in any type of solvent, by simply adapting the chemical nature of the stabilizing chains to the dispersing medium. The concept of supramolecular functionalization can be applied to other particles, for example, silica or metal oxides, as well as to dispersing in polymer melts, films or coatings.  相似文献   

2.
We fabricate mesoporous silica/epoxy polymer composites through a solvent evaporation process. The easy penetration of the epoxy polymers into mesopores is achieved by using a diluted polymer solution including a volatile organic solvent. After the complete solvent evaporation, around 90% of the mesopores are estimated to be filled with the epoxy polymer chains. Here we carefully investigate the thermal expansion behavior of the obtained mesoporous silica/polymer composites. Thermal mechanical analysis (TMA) charts revealed that coefficient of linear thermal expansion (CTE) gradually decreases, as the amount of the doped mesoporous silica increases. Compared with spherical silica particle without mesopores, mesoporous silica particles show a greater effect on lowering the CTE values. Interestingly, it is found that the CTE values are proportionally decreased with the decrease of the total amount of the polymers outside the mesopores. These data demonstrate that polymers embedded inside the mesopores become thermally stable, and do not greatly contribute to the thermal expansion behavior of the composites.  相似文献   

3.
Polyethylene films grow on a flat silica surface modified by the bis(imino)pyridyl iron(II) catalyst during ethylene polymerization in toluene solvent. The resulting films show superhydrophobic properties. Advancing water contact angle as high as 169 degrees and sliding angles as low as 2 degrees are obtained on these films. SEM images reveal special surface structures of these films containing micrometer-sized islands, submicrometer particles on the islands, and stress nanofibers between the islands, which render superhydrophobicity to the polyethylene surfaces. After the submicrometer particles and stress nanofibers are removed by annealing, the superhydrophobic properties of the polymer films disappear.  相似文献   

4.
Surface properties of poly(cyclopentadiene)–silica hybrid particles (PCPD–silica) were studied by means of XPS and electrokinetic measurements. The surfaces of PCPD–silica particles exhibit two different areas with different properties: bare silica holes and PCPD patches. The PCPD chains contain different functional groups such as alcohol and carbonyl groups that were identified by XPS. The PCPD chains are grafted covalently onto the silica surface via Si–O–C bonds created by the reaction of silanol groups and active PCPD chains. The amount of Si–O–C was examinated by means of XPS. The Brønsted acidity of the residual silanol groups was determined by means of electro-kinetic measurements. It was found that the pK a values of the residual silanol groups increase with increasing polymer content on the particle surface. The surface acceptor strengths of the hybrid particles in non-aqueous liquids were investigated by the solvatochromic indicator bis(1,10-phenanthroline)-cis-dicyano-iron-II in 1,2-dichloroethane.  相似文献   

5.
As a way to control the surface properties of nanowires and nanotubes, we present a method for growing polymer from the surface of silicon/silica core/shell nanowires. After modification of nanowire surfaces with polymer initiators, Atom Transfer Radical Polymerization (ATRP) was used to grow methacrylate polymer chains from the surface. The resulting structures were characterized by SEM, TEM, and EELS. After etching the silicon cores, the resulting polymer-coated nanotubes will have hydrophilic silica cores with hydrophobic polymer shells.  相似文献   

6.
Acrylic polymer/silica organic–inorganic hybrid emulsions were synthesized by a simple method, that is, a conventional emulsion polymerization and subsequent sol–gel process, to provide water‐based coating materials. The acrylic polymer emulsions contained a silane coupling agent monomer, such as methacryloxypropyltriethoxysilane, to form highly solvent‐resistant hybrid films. On the other hand, the hybrid films from the surface‐modified polymer emulsions, in which the silane coupling agent was located only on the surface of the polymer particles and the particle core was not crosslinked, did not exhibit high solvent resistance. A honeycomblike array structure, which was derived from the polymer particles (diameter ≈ 50 nm) and the silica domain, on the hybrid film surfaces was observed by atomic force microscopy. The crosslinked core part and silane coupling agent containing the shell part of the polymer particles played important roles in attaining high solvent resistance. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4736–4742, 2006  相似文献   

7.
Associating polymers are hydrophilic long-chain molecules containing a small amount of hydrophobic groups. The aqueous solutions show viscoelastic responses above some critical concentrations because a three-dimensional structure is formed by association of hydrophobic groups. When the associating polymers are added to silica suspensions at low concentrations, the flocculation is induced by bridging mechanisms, and the flow of suspensions become shear-thinning. For suspensions prepared with polymer solutions in which the associating network is developed, the viscosity decreases, shows a minimum, and then increases with increasing particle concentration. The viscosity decrease may arise from the breakdown of associating network due to adsorption of polymer chains onto the silica surfaces. As the particle concentration is increased, the polymer concentration in solution is decreased, and finally, all polymer chains are adsorbed on the surfaces. Beyond this point, the partial coverage of particle surfaces takes place and strong interactions are generated between particles by polymer bridging. Since the stable suspensions are converted to highly flocculated systems, the viscosity is increased and the flow becomes shear-thinning. The concentration effect of silica particles on the viscosity behavior of suspensions can be explained by a combination of viscosity decrease in solution due to polymer adsorption and viscosity increase due to flocculation.  相似文献   

8.
Associating polymers which consist of water-soluble long-chain molecules containing a small fraction of hydrophobic groups (hydrophobes) behave as flocculants in aqueous suspensions. The effects of associating polymers on the rheological behavior are studied for single suspensions of particles with hydrophilic and hydrophobic surfaces, and their mixtures. For particles with hydrophilic surfaces, the suspensions are highly flocculated by a bridging mechanism, because the water-soluble chains adsorb onto hydrophilic surfaces. On the other hand, the particles with hydrophobic surfaces cannot be dispersed in water without polymer and the additions of a small amount of polymer are required for preparation of homogeneous suspensions. The associating polymer acts as a dispersant at low concentrations. However, further additions of polymer lead to a drastic increase in viscosity. Since the hydrophobes on one end of molecules adsorb onto hydrophobic surfaces and other hydrophobes tending from the particles can form micelles, the particles are connected by linkage of interchain associations. By mixing two suspensions of particles with hydrophilic and hydrophobic surfaces, the viscosity is substantially reduced and the flow becomes nearly Newtonian. The associating polymer in complex suspensions acts as a binder between the hydrophilic and hydrophobic surfaces. The hetero-flocculation which leads to the formation of composite particles may be responsible for the viscosity reduction of complex suspensions.  相似文献   

9.
The silica/polymer hybrid hollow nanoparticles with channels and gatekeepers were successfully fabricated with a facile strategy by using thermoresponsive complex micelles of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) (PEG-b-PNIPAM) and poly(N-isopropylacrylamide)-b-poly(4-vinylpyridine) (PNIPAM-b-P4VP) as the template. In aqueous solution, the complex micelles (PEG-b-PNIPAM/PNIPAM-b-P4VP) formed with the PNIPAM block as the core and the PEG/P4VP blocks as the mixed shell at 45 °C and pH 4.0. After shell cross-linking by 1,2-bis(2-iodoethoxyl)ethane (BIEE), tetraethylorthosilicate (TEOS) selectively well-deposited on the P4VP block and processed the sol-gel reaction. When the temperature was decreased to 4 °C, the PNIPAM block became swollen and further soluble, and the PEG-b-PNIPAM block copolymer escaped from the hybrid nanoparticles as a result of swelled PNIPAM and weak interaction between PEG and silica at pH 4.0. Therefore, the hybrid hollow silica nanoparticles with inner thermoresponsive PNIPAM as gatekeepers and channels in the silica shell were successfully obtained, which could be used for switchable controlled drug release. In the system, the complex micelles, as a template, could avoid the formation of larger aggregates during the preparation of the hybrid hollow silica nanoparticles. The thermoresponsive core (PNIPAM) could conveniently control the hollow space through the stimuli-responsive phase transition instead of calcination or chemical etching. In the meantime, the channel in the hybrid silica shell could be achieved because of the escape of PEG chains from the hybrid nanoparticles.  相似文献   

10.
Aqueous solutions of alpha-cyclodextrin (alpha-CD) complex spontaneously with poly(ethylene oxide) (PEO), forming a supramolecular structure known as pseudopolyrotaxane. We have studied the formation of the complex obtained from the threading of alpha-CD onto PEO, both free in solution and adsorbed on colloidal silica. The kinetics of the reaction were studied by gravimetric methods and determined as a function of temperature and solvent composition for the PEO free in solution. PEO was then adsorbed on the surface of colloidal silica particles, and the monomers were displaced by systematically varying the degree of complexation, the concentration of particles, and the molecular weight of the polymer. The effect of the size of the silica particles on the yield of the reaction was also studied. With the adsorbed PEO, the complexation was found to be partial and to take place from the tails of the polymer. The formation of a gel network containing silica at high degrees of complexation was observed. Small-angle X-ray and neutron scattering experiments were performed to study the configuration of the polymeric chains and confirmed the partial desorption of the polymer from the surface of the silica upon complexation.  相似文献   

11.
Ormosil (organically modified silane) such as n-octyl triethoxy silane has been found to aggregate in the form of normal micelles as well as reverse micelles in which the triethoxy silane moeities are hydrolyzed to form a hydrated silica network while the n-octyl groups are held together through hydrophobic interaction. These nanoparticles are spherical in shape and are nearly monodispersed with an average diameter of below 100 nm. The nanoparticles originating from the micellar aggregate have an hydrophobic core with a layer of the hydrated silica network at the surface. The hydrophobic core can host hydrophobic molecules such as tetraphenyl porphyrin, which is leached out of the particles extremely slowly compared to that in Triton X-100 micelles. The nanoparticles originating from the reverse micelles have a hydrated silica network in the core surrounded by the hydrophobic n-octyl chains on the particle surface. The hydrophilic silica cores of these nanoparticles have been used to encapsulate horseradish peroxidase (HRP) and the enzyme shows its activity and follows Michaelis-Menten kinetics.  相似文献   

12.
The surfactant-mediated desorption of adsorbed poly(vinylpyrrolidone), PVP, from anionic silica surfaces by sodium dodecyl sulfate, SDS, was observed. While photon correlation spectroscopy shows that the size of the polymer-surfactant-particle ensemble grows with added SDS, a reduction in the near-surface polymer concentration is measured by solvent relaxation NMR. Volume fraction profiles of the polymer layer extracted from small-angle neutron scattering experiments illustrate that the adsorbed polymer layer has become more diffuse and the polymer chains more elongated as a result of the addition of SDS. The total adsorbed amount is shown to decrease due to Coulombic repulsion between the surfactant-polymer complexes and between the complexes and the anionic silica surface.  相似文献   

13.
We report a new supramolecular method for the synthesis of well-defined pristine C 60/polymer colloid nanocomposites in water. The colloids include polymer micelles and emulsion particles. To a polymer colloid solution in water or alcohol, we introduced C 60 solution in a solvent that is miscible with water or alcohol. After the two solutions mixed, polymer colloids and C 60 spontaneously assembled into stable colloidal nanocomposites. After a dialysis process, a nanocomposite dispersion in pure water was obtained. As characterized by DLS and (Cryo-)TEM, the nanocomposites have a core-shell structure with C 60 aggregated on the surface of emulsion particles or micellar cores. The resulting nanocomposites have many potential applications such as biomedicals and photovoltaics.  相似文献   

14.
Thermo-responsive polymer films have enabled the development of various functional surfaces with switchable interfacial properties. Assessing the surface forces and friction on such films is of paramount importance. On the one hand, it allows us to extract a great deal of information on the interfacial properties of the films, e.g., adhesiveness and lubricity, and how they could be tuned using different stimuli. On the other hand, surface force measurements complement other thin-film analysis methods, e.g., ellipsometry, to better perceive the correlation between the molecular properties of the polymer chains and the interfacial properties of the film. On this basis, we will, herein, provide a concise review of some recent studies on surface forces and friction tuned by thermo-responsive polymer films. This outline comprises a summary of several research works addressing the effects of temperature, solvent composition, and salts on surface forces and friction. In the end, we briefly discuss a few select studies in which the regulation of surface forces by thermo-responsive polymers is examined with an emphasis on the potential applications.  相似文献   

15.
A novel synthetic approach for the efficient fabrication of Janus silica particles was demonstrated by embedment of zero-dimensional colloids on one-dimensional polymer fiber surfaces, followed by the surface modification on the exposed silica hemispheres. Electrospinning of poly(methyl methacrylate) and poly(4-vinyl pyridine) blends produced polymer fibers with high specific surface area and desired surface hydrophilicities. Fiber compositions determined the colloid adsorption density and uniformity. The colloid embedding resulted from the polymer softening was manipulated by the isothermal heat treatment. Subsequent silianization completed the amino functionalities on hemispherical surfaces of embedded silica colloids. Janus particles with uniform asymmetric chemical features were further labeled with gold nanoparticles before their recovery from fiber substrates. Fabrication of Janus particles, including colloid adsorption, temperature-driven embedding, and hemispherical surface modification, were investigated and are discussed.  相似文献   

16.
Homogeneous polystyrene monolayers covalently end-attached on mica and silica surfaces were obtained using a "graft to" methodology. The grafting was achieved via nucleophilic substitution between silanol groups (Si-OH) containing surface and monochlorosilyl terminated polystyrene (PS). Different parameters, such as surface activation, grafting reaction time, polymer concentration, nature of solvent, and presence of catalyst, were investigated to determine the optimal conditions for creating very homogeneous and stable polymer monolayers. Ellipsometry, atomic force microscopy (AFM), surface forces apparatus (SFA), and contact angle measurements were used to characterize the polymer-grafted layers. An efficient plasma activation procedure was established to create a maximum number of silanol groups on mica surfaces without increasing the surface roughness. Surface reactivity was investigated by grafting trimethylchlorosilane (TMS) on OH-activated mica and silica. The maximum TMS surface coverage on activated mica is similar to that observed for silica. The stability of covalently attached TMS and PS layers in toluene and water were investigated. Both grafted layers (TMS and PS) partially detached from the mica and silica surfaces when immersed in water. Hydrolysis of the siloxane bond between the monochlorosilyl groups and the surface is the most probable cause of layer degrafting. The degrafting was much slower with the long PS polymer chains, compared to the small TMS molecules, which may act as a protective layer against hydrolysis.  相似文献   

17.
Textured surfaces consisting of nanometer- to micrometer-sized lightly sulfonated polystyrene ionomer (SPS) particles were prepared by rapid evaporation of the solvent from a dilute polymer solution-cast onto silica. The particle textured ionomer surfaces were prepared by either spin-coating or solution-casting ionomer solutions at controlled evaporation rates. The effects of the solvent used to spin-coat the film, the molecular weight of the ionomer, and the rate of solvent evaporation on the surface morphology of cast films were investigated. The surface morphologies were consistent with a spinodal decomposition mechanism, where the surface first existed as a percolated-like structure and then ripened into droplets if molecular mobility was retained for sufficient time. The SPS particles or particle aggregates were robust and resisted separation from the surface even after annealing at 120 °C for 1 week. The water contact angles on as-prepared surfaces were relatively low, ~90°, due to the polar groups in the ionomer, but when the surface was modified by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltrichlorosilane, the surface contact angles increased to ~109° on smooth surfaces and up to ~140° on the textured surfaces. Although the surfaces were hydrophobic, the contact angle hysteresis was relatively high and water droplets stuck to these surfaces even when the surface was turned upside down.  相似文献   

18.
We have performed molecular dynamics simulations of polyelectrolyte adsorption at oppositely charged surfaces from dilute polyelectrolyte solutions. In our simulations, polyelectrolytes were modeled by chains of charged Lennard-Jones particles with explicit counterions. We have studied the effects of the surface charge density, surface charge distribution, solvent quality for the polymer backbone, strength of the short-range interactions between polymers and substrates on the polymer surface coverage, and the thickness of the adsorbed layer. The polymer surface coverage monotonically increases with increasing surface charge density for almost all studied systems except for the system of hydrophilic polyelectrolytes adsorbing at hydrophilic surfaces. In this case the polymer surface coverage saturates at high surface charge densities. This is due to additional monomer-monomer repulsion between adsorbed polymer chains, which becomes important in dense polymeric layers. These interactions also preclude surface overcharging by hydrophilic polyelectrolytes at high surface charge densities. The thickness of the adsorbed layer shows monotonic dependence on the surface charge density for the systems of hydrophobic polyelectrolytes for both hydrophobic and hydrophilic surfaces. Thickness is a decreasing function of the surface charge density in the case of hydrophilic surfaces while it increases with the surface charge density for hydrophobic substrates. Qualitatively different behavior is observed for the thickness of the adsorbed layer of hydrophilic polyelectrolytes at hydrophilic surfaces. In this case, thickness first decreases with increasing surface charge density, then it begins to increase.  相似文献   

19.
Surface modification for stability of nano-sized silica colloids   总被引:4,自引:0,他引:4  
The surfaces of commercial 30-nm colloidal silica particles were modified by reacting with functional silanes. The high specific surface area and reactivity of the particles due to the small size make the process susceptible to irreversible aggregation not found previously with larger particles. This study compares surface charge results from different reaction conditions and characterization methods. Measurements of the zeta potential as a function of pH and gelation kinetics shed light on the mechanism of instability in nano-sized silica suspensions. Experimental results showed that very stable particles can be suspended in a nonaqueous solvent after refluxing of the silica particles, while maintaining the original particles physical properties of size and electrochemical behavior. Extremely stable particles are obtained by aminosilane surface modification. Factors affecting susceptibility of small particles to irreversible aggregation caused by a nonaqueous solvent or a high concentration of a trialkoxysilane, including the large amount of reactive silanol groups on the surface gel layer of the particles, are discussed.  相似文献   

20.
Adsorption and spontaneous polymerization of head- or tail-type surface active monomers having long methylene chains on colloidal silica and δ-alumina were investigated. Both head-type and tail-type ammonium monomers on silica in chloroform or tetrahydrofuran had the maximum adsorption on the respective adsorption isotherm. Above the monomer concentration giving the maximum adsorption, it was observed that the monomer formed micelles or clusters in bulk solution with removal of adsorbed water molecules from the silica surface. At the monomer concentration giving the maximum adsorption, heating the silica suspension containing the monomer at 40°C or 60°C in tetrahydrofuran or chloroform solution resulted in spontaneous polymerization. The composite particles formed by polymerization were observed to have many spots consisting of polymer on the surface. Therefore, it is suggested that the monomers are concentrated by micelle-like aggregation on the silica surface and consecutively spontaneous polymerization takes place. Adsorption of an anion-type monomer having a carboxyl group on δ-alumina, which exhibited a positive ζ potential in neutral aqueous solution, was higher than that on colloidal silica, but did not spontaneously polymerize on alumina. Received: 13 June 1998 Accepted in revised form: 19 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号