首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly efficient majority‐rules effect of poly(quinoxaline‐2,3‐diyl)s (PQXs) bearing 2‐butoxymethyl chiral side chains at the 6‐ and 7‐positions was established and attributed to large ΔGh values (0.22–0.41 kJ mol?1), which are defined as the energy difference between P‐ and M‐helical conformations per chiral unit. A PQX copolymer prepared from a monomer derived from (R)‐2‐octanol (23 % ee) and a monomer bearing a PPh2 group adopted a single‐handed helical structure (>99 %) and could be used as a highly enantioselective chiral ligand in palladium‐catalyzed asymmetric reactions (products formed with up to 94 % ee), in which the enantioselectivity could be switched by solvent‐dependent inversion of the helical PQX backbone.  相似文献   

2.
王少华  涂永强  陈鹏 《中国化学》2006,24(2):165-168
The easily prepared and recoverable chiral N-sulfonylated fl-amino alcohol 2 in combination with Ti(OPr-i)4 was found to be an effective chiral catalyst for the enantioselective addition of alkynylzinc to ketones, which gave the useful products, i.e. chiral tertiary propargyl alcohols, with the ee up to 92%.  相似文献   

3.
New advances into the chirality effect in the self‐assembly of block copolymers (BCPs) have been achieved by tuning the helicity of the chiral‐core‐forming blocks. The chiral BCPs {[N?P(R)‐O2C20H12]200?x[N?P(OC5H4N)2]x}‐b‐ [N?PMePh]50 ((R)‐O2C20H12=(R)‐1,1′‐binaphthyl‐2,2′‐dioxy, OC5H4N=4‐pyridinoxy (OPy); x=10, 30, 60, 100 for 3 a – d , respectively), in which the [N?P(OPy)2] units are randomly distributed within the chiral block, have been synthesised. The chiroptical properties of the BCPs ([α]D vs. T and CD) demonstrated that the helicity of the BCP chains may be simply controlled by the relative proportion of the chiral and achiral (i.e., [N?P(R)‐O2C20H12] and [N?P(OPy)2], respectively) units. Thus, although 3 a only contained only 5 % [N?P(OPy)2] units and exhibited a preferential helical sense, 3 d with 50 % of this unit adopted non‐preferred helical conformations. This gradual variation of the helicity allowed us to examine the chirality effect on the self‐assembly of chiral and helical BCPs (i.e., 3 a – c ) and chiral but non‐helical BCPs (i.e., 3 d ). The very significant influence of the helicity on the self‐assembly of these materials resulted in a variety of morphologies that extend from helical nanostructures to pearl‐necklace aggregates and nanospheres (i.e., 3 b and 3 d , respectively). We also demonstrate that the presence of pyridine moieties in BCPs 3 a – d allows specific decoration with gold nanoparticles.  相似文献   

4.
The p‐tetra‐tert‐butyl calix[4] arene derivatives (3 and 4) with (5,5) chiral bicyclic guanidinium, as the receptors of amino acid zwitterions, have been synthesized via a O‐alkylation reaction of p‐tetra‐tert‐butyl calix [4] arene with cbJoromethyl chiral bicyclic guanidinium 2 in the presence of anhydrous K2CO3 in acetonitrile. The results obtained from liquid‐liquid competitive extraction experiments indicate that the two receptors may selectively recognize L‐aromatic amino acids, and that the enantioselective recognizability of the receptor 4 with two chiral bicyclic guanidinium units reachs up to about 90% for L‐Phe.  相似文献   

5.
We present an expedient and economical route to a new spiroketal‐based C2‐symmetric chiral scaffold, termed SPIROL. Based on this spirocyclic scaffold, several chiral ligands were generated. These ligands were successfully employed in an array of stereoselective transformations, including in iridium‐catalyzed hydroarylations (up to 95 % ee), palladium‐catalyzed allylic alkylations (up to 97 % ee), intermolecular palladium‐catalyzed Heck couplings (up to 94 % ee), and rhodium‐catalyzed dehydroalanine hydrogenation (up to 93 % ee).  相似文献   

6.
We present an expedient and economical route to a new spiroketal‐based C2‐symmetric chiral scaffold, termed SPIROL. Based on this spirocyclic scaffold, several chiral ligands were generated. These ligands were successfully employed in an array of stereoselective transformations, including in iridium‐catalyzed hydroarylations (up to 95 % ee), palladium‐catalyzed allylic alkylations (up to 97 % ee), intermolecular palladium‐catalyzed Heck couplings (up to 94 % ee), and rhodium‐catalyzed dehydroalanine hydrogenation (up to 93 % ee).  相似文献   

7.
A wide range of 2,3‐disubstituted quinoxalines have been successfully hydrogenated with H2 using borane catalysts to produce the desired tetrahydroquinoxalines in 80–99 % yields with excellent cis selectivity. Significantly, the asymmetric reaction employing chiral borane catalysts generated by the in situ hydroboration of chiral dienes with HB(C6F5)2 under mild reaction conditions has also been achieved with up to 96 % ee, and represents the first catalytic asymmetric system to furnish optically active cis‐2,3‐disubstituted 1,2,3,4‐tetrahydroquinoxalines.  相似文献   

8.
XU Hui  MENG Qing-Hua  ZHANG Zhao-Guo   《中国化学》2008,26(9):1656-1658
以[RuCl2(benzene)]2 和 SunPhos为原料现场制备的催化剂,催化不对称氢化α-羟基酮类化合物可获得手性1, 2-二醇类化合物,ee值最高达99%。  相似文献   

9.
Reliable methods for enantioselective cis‐dihydroxylation of trisubstituted alkenes are scarce. The iron(II) complex cis‐α‐[FeII(2‐Me2‐BQPN)(OTf)2], which bears a tetradentate N4 ligand (Me2‐BQPN=(R,R)‐N,N′‐dimethyl‐N,N′‐bis(2‐methylquinolin‐8‐yl)‐1,2‐diphenylethane‐1,2‐diamine), was prepared and characterized. With this complex as the catalyst, a broad range of trisubstituted electron‐deficient alkenes were efficiently oxidized to chiral cis‐diols in yields of up to 98 % and up to 99.9 % ee when using hydrogen peroxide (H2O2) as oxidant under mild conditions. Experimental studies (including 18O‐labeling, ESI‐MS, NMR, EPR, and UV/Vis analyses) and DFT calculations were performed to gain mechanistic insight, which suggested possible involvement of a chiral cis‐FeV(O)2 reaction intermediate as an active oxidant. This cis‐[FeII(chiral N4 ligand)]2+/H2O2 method could be a viable green alternative/complement to the existing OsO4‐based methods for asymmetric alkene dihydroxylation reactions.  相似文献   

10.
Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface‐anchored metal–organic frameworks (SURMOFs) based on camphoric acid (D‐ and Lcam) with the composition [Cu2(Dcam)2x(Lcam)2?2x(dabco)]n (dabco=1,4‐diazabicyclo‐[2.2.2]‐octane). The three‐dimensional chiral SURMOFs with high‐quality orientation were grown on quartz glass plates by using a layer‐by‐layer liquid‐phase epitaxy method. The growth orientation, as determined by X‐ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH‐ or COOH‐terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)]n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu2(Dcam)2(dabco)]n and [Cu2(Lcam)2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)‐ethyl‐D ‐lactate and (?)‐ethyl‐L ‐lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture.  相似文献   

11.
In this study, a series of chiral stationary phases based on N‐[(4‐methylphenyl)sulfonyl]‐l ‐leucine amide, whose enantiorecognition property has never been studied, were synthesized. Their enantioseparation abilities were chromatographically evaluated by 67 enantiomers. The chiral stationary phase derived from N‐[(4‐methylphenyl)sulfonyl]‐l ‐leucine showed much better enantioselectivities than that based on N‐(4‐methylbenzoyl)‐l ‐leucine amide. The construction of C2 symmetric chiral structure greatly improved the enantiorecognition performance of the stationary phase. The C2 symmetric chiral stationary phase exhibited superior enantioresolutions to other chiral stationary phases for most of the chiral analytes, especially for the chiral analytes with C2 symmetric structures. By comparing the enantioseparations of the enantiomers with similar structures, the importance of hydrogen bond interaction, π–π interaction, and steric hindrance on enantiorecognition was elucidated. The enantiorecognition mechanism of transN,N′‐(1,2‐diphenyl‐1,2‐ethanediyl)bis‐acetamide, which had an excellent separation factor on the C2 symmetric chiral stationary phase, was investigated by 1H‐NMR spectroscopy and 2D 1H‐1H nuclear overhauser enhancement spectroscopy.  相似文献   

12.
Rhodium/DuanPhos‐catalyzed asymmetric hydrogenation of aliphatic α‐dehydroamino ketones has been achieved and afforded chiral α‐amino ketones in high yields and excellent enantioselectives (up to 99 % ee), which could be reduced further to chiral β‐amino alcohols by LiAlH(tBuO)3 with good yields. This protocol provides a readily accessible route for the synthesis of chiral α‐amino ketones and chiral β‐amino alcohols.  相似文献   

13.
A novel chiral ionic liquid functionalized β‐cyclodextrin, 6‐O‐2‐hydroxpropyltrimethylammonium‐β‐cyclodextrin tetrafluoroborate ([HPTMA‐β‐CD][BF4]), was synthesized and used as a chiral selector in capillary electrophoresis. [HPTMA‐β‐CD][BF4] not only increased the solubility in aqueous buffer in comparison with the parent compound, but also provided a stable reversal electroosmotic flow, and the enantioseparation of eight chiral drugs was examined in phosphate buffer containing [HPTMA‐β‐CD][BF4] as the chiral selector. The effects of the [HPTMA‐β‐CD][BF4] concentration and the background electrolyte pH were studied. Moreover, the chiral separation abilities of β‐CD and [HPTMA‐β‐CD][BF4] were compared and possible mechanisms for the chiral recognition of [HPTMA‐β‐CD][BF4] are discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The asymmetric hydrogenation of pyrimidines proceeded with high enantioselectivity (up to 99 % ee) using an iridium catalyst composed of [IrCl(cod)]2, a ferrocene‐containing chiral diphosphine ligand (Josiphos), iodine, and Yb(OTf)3 (cod=1,5‐cyclooctadiene). The chiral catalyst converted various 4‐substituted pyrimidines into chiral 1,4,5,6‐tetrahydropyrimidines in high yield. The lanthanide triflate is crucial for achieving the high enantioselectivity as well as for activating the heteroarene substrate.  相似文献   

15.
A facile avenue to fabricate micrometer‐sized chiral (L ‐, D ‐) and meso‐like (dl ‐) SiO2 materials with unique structures by using crystalline complexes (cPEI/tart), composed of comblike polyethyleneimine (cPEI) and L ‐, D ‐, or dl ‐tartaric acid, respectively, as catalytic templates is reported. Interestingly, both chiral crystalline complexes appeared as regularly left‐ and right‐twisted bundle structures about 10 μm in length and about 5 μm in diameter, whereas the dl ‐form occurred as circular structures with about 10 μm diameter. Subsequently, SiO2@cPEI/tart hybrids with high silica content (>55.0 wt %) were prepared by stirring a mixture containing tetramethoxysilane (TMOS) and the aggregates of the crystalline complexes in water. The chiral SiO2 hybrids and calcined chiral SiO2 showed very strong CD signals and a nanofiber‐based morphology on their surface, whereas dl ‐SiO2 showed no CD activity and a nanosheet‐packed disklike shape. Furthermore, metallic silver nanoparticles (Ag NPs) were encapsulated in each silica hybrid to obtain chiral (D and L forms) and meso‐like (dl form) Ag@SiO2 composites. Also, the reaction between L ‐cysteine (Lcys) and these Ag@SiO2 composites was preliminarily investigated. Only chiral L ‐ and D ‐Ag@SiO2 composites promoted the reaction between Lcys and Ag NPs to produce a molecular [Ag–Lcys]n complex with remarkable exciton chirality, whereas the reaction hardly occurred in the case of meso‐like (dl ‐) Ag@SiO2 composite.  相似文献   

16.
A series of chiral 1,3‐dioxolanes, 3 – 12 , with >99% ee values, have been synthesized. This is the first study of chiral ketalization reaction starting from ketones with aryl, monosubstituted aryl, and long alkyl chains (C11—AC13). Their ee values were determined by chiral high‐performance liquid chromatography (HPLC) on Chiralcel OD column, using their racemic 1,3‐dioxolanes rac‐ 3 – 12 , which were also synthesized for the first time. These chiral and racemic 1,3‐dioxolanes were characterizated by infrared, NMR (1H, 13C), mass spectrometry, elemental analysis, optical rotation, and chiral HPLC.  相似文献   

17.
李响赵刚  曹卫国 《中国化学》2006,24(10):1402-1405
Asymmetric reduction of diketones with borane reagents generated in situ using cheap and available NaBH_4 andSnCl_2 in the presence of(S)-(-)-α,α-diphenyl-2-pyrrolidinemethanol was successfully achieved to yield the corre-sponding chiral diols with excellent stereoselectivity and enantioselectivity.And the chiral diol was transformedinto optically pure C_2-symmetricl chiral amine or thioether.  相似文献   

18.
Through photocatalysed regiospecific and stereoselective additions of cycloamines to 5‐(R)‐(l)‐menthyloxy‐2 (5H)‐furanone (3), chiral 5‐(R)‐(l)‐menthyloxy‐4‐cycloaminobutyrolactones were synthesized. In the new asymmetric photoaddition of compound 3, the N‐methyl cyclic amines (4) gave novel chiral C? C photoadducts (5) in 24–50% isolated yields with d. e. ≥ 98%. However, the secondary cyclic amines (6) afforded optically active N? C photoadducts (7) in 34–58% isolated yields with d. e. ≥ 98% under the same condition. All the synthesized optically active compounds were identified on the basis of their analytical data and spectroscopic data, such as [α]58920, IR, 1H NMR, 13C NMR, MS and elementary analysis. The photosynthesis of chiral butyrolactones and its mechanism were discussed in detail.  相似文献   

19.
A set of ten C1‐symmetric chiral bicyclo[2.2.2]octa‐2,5‐dienes (bod*) 2 (Fig. 1) were tested as ligands in Rh‐catalyzed arylation reactions. The 1,4‐addition of arylboronic acids to cyclohex‐2‐en‐1‐one, cyclopent‐2‐en‐1‐one, and tert‐butyl cinnamate proceeded smoothly with excellent enantioselectivities (up to 99% ee; Tables 13). The challenging 1,2‐addition of triphenylboroxine to N‐[(4‐nitrophenyl)sulfonyl]imines yielded the product in high yield and in good enantioselectivity (up to 92% ee; Table 4). Generally, the use of C1‐symmetric chiral bod* ligands bearing bulky substituents resulted in lower enantioselectivities, whereas several electron‐poor and electron‐rich bod* ligands gave higher enantioselectivities than the benchmark ligands reported in literature.  相似文献   

20.
The use of a chiral, emitting skeleton for axially chiral enantiomers showing activity in thermally activated delayed fluorescence (TADF) with circularly polarized electroluminescence (CPEL) is proposed. A pair of chiral stable enantiomers, (?)‐(S)‐Cz‐Ax‐CN and (+)‐(R)‐Cz‐Ax‐CN, was designed and synthesized. The enantiomers, both exhibiting intramolecular π‐conjugated charge transfer (CT) and spatial CT, show TADF activities with a small singlet–triplet energy difference (ΔEST) of 0.029 eV and mirror‐image circularly polarized luminescence (CPL) activities with large glum values. Notably, CP‐OLEDs based on the enantiomers feature blue electroluminescence centered at 468 nm with external quantum efficiencies (EQEs) of 12.5 and 12.7 %, and also show intense CPEL with gEL values of ?1.2×10?2 and +1.4×10?2, respectively. These are the first CP‐OLEDs based on TADF‐active enantiomers with efficient blue CPEL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号