首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In polynuclear biological active sites, multiple electrons are needed for turnover, and the distribution of these electrons among the metal sites is affected by the structure of the active site. However, the study of the interplay between structure and redox distribution is difficult not only in biological systems but also in synthetic polynuclear clusters since most redox changes produce only one thermodynamically stable product. Here, the unusual chemistry of a sterically hindered trichromium complex allowed us to probe the relationship between structural and redox isomerism. Two structurally isomeric trichromium imides were isolated: asymmetric terminal imide (tbsL)Cr3(NDipp) and symmetric, μ3-bridging imide (tbsL)Cr33–NBn) ((tbsL)6− = (1,3,5-C6H9(NC6H4-o-NSitBuMe2)3)6−). Along with the homovalent isocyanide adduct (tbsL)Cr3(CNBn) and the bisimide (tbsL)Cr33–NPh)(NPh), both imide isomers were examined by multiple-wavelength anomalous diffraction (MAD) to determine the redox load distribution by the free refinement of atomic scattering factors. Despite their compositional similarities, the bridging imide shows uniform oxidation of all three Cr sites while the terminal imide shows oxidation at only two Cr sites. Further oxidation from the bridging imide to the bisimide is only borne at the Cr site bound to the second, terminal imido fragment. Thus, depending on the structural motifs present in each [Cr3] complex, MAD revealed complete localization of oxidation, partial localization, and complete delocalization, all supported by the same hexadentate ligand scaffold.

Application of high-resolution Multiwavelength Anomalous Diffraction (MAD) allows the assignment of localized, partly delocalized, and fully delocalized oxidation in a series of trichromium imide isomers.  相似文献   

2.
Metalation of the polynucleating ligand F,tbsLH6 (1,3,5-C6H9(NC6H3−4-F−2-NSiMe2tBu)3) with two equivalents of Zn(N(SiMe3)2)2 affords the dinuclear product (F,tbsLH2)Zn2 ( 1 ), which can be further deprotonated to yield (F,tbsL)Zn2Li2(OEt2)4 ( 2 ). Transmetalation of 2 with NiCl2(py)2 yields the heterometallic, trinuclear cluster (F,tbsL)Zn2Ni(py) ( 3 ). Reduction of 3 with KC8 affords [KC222][(F,tbsL)Zn2Ni] ( 4 ) which features a monovalent Ni centre. Addition of 1-adamantyl azide to 4 generates the bridging μ3-nitrenoid adduct [K(THF)3][(F,tbsL)Zn2Ni(μ3-NAd)] ( 5 ). EPR spectroscopy reveals that the anionic cluster possesses a doublet ground state (S = ). Cyclic voltammetry of 5 reveals two fully reversible redox events. The dianionic nitrenoid [K2(THF)9][(F,tbsL)Zn2Ni(μ3-NAd)] ( 6 ) was isolated and characterized while the neutral redox isomer was observed to undergo both intra- and intermolecular H-atom abstraction processes. Ni K-edge XAS studies suggest a divalent oxidation state for the Ni centres in both the monoanionic and dianionic [Zn2Ni] nitrenoid complexes. However, DFT analysis suggests Ni-borne oxidation for 5 .  相似文献   

3.
Tetrakis(p‐tolyl)oxalamidinato‐bis[acetylacetonatopalladium(II)] ([Pd2(acac)2(oxam)]) reacted with Li–C≡C–C6H5 in THF with formation of [Pd(C≡C–C6H5)4Li2(thf)4] ( 1a ). Reaction of [Pd2(acac)2(oxam)] with a mixture of 6 equiv. Li–C≡C–C6H5 and 2 equiv. LiCH3 resulted in the formation of [Pd(CH3)(C≡C–C6H5)3Li2(thf)4] ( 2 ), and the dimeric complex [Pd2(CH3)4(C≡C–C6H5)4Li4(thf)6] ( 3 ) was isolated upon reaction of [Pd2(acac)2(oxam)] with a mixture of 4 equiv. Li–C≡C–C6H5 and 4 equiv. LiCH3. 1 – 3 are extremely reactive compounds, which were isolated as white needles in good yields (60–90%). They were fully characterized by IR, 1H‐, 13C‐, 7Li‐NMR spectroscopy, and by X‐ray crystallography of single crystals. In these compounds Li ions are bonded to the two carbon atoms of the alkinyl ligand. 1a reacted with Pd(PPh3)4 in the presence of oxygen to form the already known complexes trans‐[Pd(C≡C–C6H5)2(PPh3)2] and [Pd(η2‐O2)(PPh3)2]. In addition, 1a is an active catalyst for the Heck coupling reaction, but less active in the catalytic Sonogashira reaction.  相似文献   

4.
Treatment of Ru3(CO)12 with an equivalent of (2‐phenyl‐1H ‐inden‐3‐yl)dicyclohexylphosphine ( 1 ) and (2‐pyridyl‐1H ‐inden‐1‐yl)dicyclohexylphosphine ( 4 ) in refluxing heptane gave the novel trinuclear ruthenium clusters (μ3‐η125–2‐phenyl‐3‐Cy2PC9H4)Ru3(CO)8 ( 1c ) and [μ2‐η1–2‐(pyridin‐2‐yl)‐3‐Cy2PC9H6]Ru3(CO)9 ( 4a ), respectively, via C ─ H bond cleavage. (2‐Mesityl‐1H ‐inden‐3‐yl)dicyclohexylphosphine ( 2 ) reacted with Ru3(CO)12 in refluxing heptane to give the trinuclear ruthenium cluster [μ‐2‐mesityl‐(3‐Cy2PC9H5)](μ2‐CO)Ru3(CO)9 ( 2c ) via C ─ H bond cleavage and carbonyl insertion. 2‐(Anthracen‐9‐yl)‐1H –inden‐3‐yldicyclohexylphosphine ( 3 ) reacted with Ru3(CO)12 in refluxing heptane to give the dinuclear ruthenium cluster [μ2‐η33–2‐(anthracen‐9‐yl)‐3‐Cy2PC9H6]Ru2(CO)5 ( 3a ). The structures of 1c , 2c , 3a and 4a were fully characterized using IR and NMR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. These results suggest that the 2‐aryl substituent on the indenyl ring has a pronounced effect on the reaction and coordination modes of Ru3(CO)12.  相似文献   

5.
The tris(2,4‐dimethylpentadienyl) complexes [Ln(η5‐Me2C5H5)3] (Ln = Nd, La, Y) are obtained analytically pure by reaction of the tribromides LnBr3·nTHF with the potassium compound K(Me2C5H5)(thf)n in THF in good yields. The structural characterization is carried out by X‐ray crystal structure analysis and NMR‐spectroscopically. The tris complexes can be transformed into the dimeric bis(2,4‐dimethylpentadienyl) complexes [Ln2(η5‐Me2C5H5)4X2] (Ln, X: Nd, Cl, Br, I; La, Br, I; Y, Br) by reaction with the trihalides THF solvates in the molar ratio 2:1 in toluene. Structure and bonding conditions are determined for selected compounds by X‐ray crystal structure analysis and NMR‐spectroscopically in general. The dimer‐monomer equilibrium existing in solution was investigated NMR‐spectroscopically in dependence of the donor strength of the solvent and could be established also by preparation of the corresponding monomer neutral ligand complexes [Ln(η5‐Me2C5H5)2X(L)] (Ln, X, L: Nd, Br, py; La, Cl, thf; Br, py; Y, Br, thf). Finally the possibilities for preparation of mono(2,4‐dimethylpentadienyl)lanthanoid(III)‐dibromid complexes are shown and the hexameric structure of the lanthanum complex [La6(η5‐Me2C5H5)6Br12(thf)4] is proved by X‐ray crystal structure analysis.  相似文献   

6.
The reactivity of the all‐ferrous FeN heterocubane [Fe4(Ntrop)4] ( 1 ) with i) Brønsted acids, ii) σ‐donors, iii) σ‐donors/π‐acceptors, and iv) one‐electron oxidants has been investigated (trop = 5H‐dibenzo[a,d]cyclo‐hepten‐5‐yl). 1 showed self‐re‐assembling after reactions with i) and proved surprisingly inert in reactions with ii) and iii), with the exception of CO. Reductive and oxidative cluster degradation was observed in reactions with CO and TEMPO, respectively. These reactions yielded new cluster compounds, namely a trinuclear bis(μ3‐imido) 48 electron complex in the former case and a tetranuclear all ferric μ‐oxo‐μ‐imido species in the latter case. Characterization techniques include NMR and in situ IR spectroscopy, single crystal X‐ray analysis, Mössbauer spectroscopy, cyclic voltammetry, magnetic susceptibility measurements, and DFT calculations.  相似文献   

7.
The synthesis of two novel titanium carbene complexes from the bis(thiophosphinoyl)methanediide geminal dianion 1 (SCS2?) is described. Dianion 1 reacts cleanly with 0.5 equivalents of [TiCl4(thf)2] to afford the bis‐carbene complex [(SCS)2Ti] ( 2 ) in 86 % yield. The mono‐carbene complex [(SCS)TiCl2(thf)] ( 3 ) can also be obtained by using an excess of [TiCl4(thf)2]. The structures of 2 and 3 are confirmed by X‐ray crystallography. A strong nucleophilic reactivity towards various electrophiles (ketones and aldehydes) is observed. The reaction of 3 with N,N′‐dicyclohexylcarbodiimide (DCC) and phenyl isocyanate leads to the formation of two novel diphosphinoketenimines 8 a and 8 b . The bis‐titanium guanidinate complex 9 is trapped as the by‐product of the reaction with DCC. The X‐ray crystal structures of 8 a and 9 are presented. The mechanism of the reaction between complex 3 and DCC is rationalized by DFT studies.  相似文献   

8.
The kinetics of oxidation of the chromium(III)‐guanosine 5‐monophosphate complex, [CrIII(L)(H2O)4]3+(L = guanosine 5‐monophosphate) by periodate in aqueous solution to CrVI have been studied spectrophotometrically over the 25–45 °C range. The reaction is first order with respect to both [IO4?] and [CrIII], and increases with pH over the 2.38–3.68 range. Thermodynamic activation parameters have been calculated. It is proposed that electron transfer proceeds through an inner‐sphere mechanism via coordination of IO4? to chromium(III).  相似文献   

9.
A water stable tetrazolate‐containing metal‐organic framework, [Cd2(L)(OH)(H2O)2]n ( 1 ) [H3L = 5‐(4‐(tetrazol‐5‐yl)phenyl)isophthalic acid], was synthesized under solvothermal conditions and structurally characterized. Compound 1 displays a three dimensional porous network with one dimensional tubular channels based on trinuclear cluster [Cd33‐OH)N4C] units. Notably, 1 exhibits highly sensitive response to Cu2+ and Cr2O72– through luminescence quenching effects with the detection limit of 0.666 ppm for Cu2+ and 0.846 ppm for Cr2O72–, respectively. The possible mechanism of the luminescence quenching was discussed in detail.  相似文献   

10.
A new CuII–azide complex, {(C4H12N2)[Cu5(N3)12]·4H2O}n, has been synthesized by the reaction of piperazine, Cu(OAc)2·2H2O (OAc is acetate) and NaN3. In the structure, μ2‐1,1‐ and μ3‐1,1,1‐azide anions bridge five CuII cations to form a linear pentanuclear cluster unit, which is further linked by μ2‐1,1‐ and μ2‐1,3‐azide anions to form a two‐dimensional condensed [Cu5(N3)12]n layer. The diprotonated piperazine and the solvent water molecules are hydrogen bonded to the coordination layers to form a three‐dimensional supramolecular network.  相似文献   

11.
Syntheses and structures of five imido‐bridged dinuclear titanium complexes and two (bis)ligand‐coordinated mononuclear titanium complexes are reported. Addition of 1 or 2 equiv. of Schiff base ligand (((1H‐pyrrol‐2‐yl)methylene)amino)‐2,3‐dihydro‐1H‐inden‐2‐ol (H2L) to Ti(NMe2)4 resulted in transamination with 4 equiv. of dimethylamides generating a (bis)ligand‐coordinated complex Ti(L)2 ( 1 ). Treatment of Ti(NMe2)4 with 1 equiv. of tBuNH2 followed by addition of 1 equiv. of H2L afforded an imido‐bridged complex [Ti(L)(NtBu)]2 ( 2 ). 1:1:1:1 reaction of Ti(NMe2)4/RNH2/H2L/py(or phen) produced imido‐bridgedcomplexes [Ti(L)(NPh)(py)]2 ( 3 ), [Ti(L)(4‐F‐PhN)(py)]2·Tol ( 4 ·Tol), [Ti(L)(4‐Cl‐PhN)(py)]2·Tol·THF ( 5 ·Tol·THF), [Ti(L)(4‐Br‐PhN)(py)]2·Tol ( 6 ·Tol) and a (bis)ligand‐coordinated complex Ti(L)2·phen ( 7 ) (py = pyridine, phen = 1,10‐phenanthroline). Attempts to prepare the monomeric titianium imido complexes were unsuccessful. DFT studies show that the assumed compound which contains Ti = N species is less stable than imido‐bridged Ti‐N(R)‐Ti complexes, providing the better understanding of the experimental results.  相似文献   

12.
A series of NCO/NCS pincer precursors, 3‐(Ar2OCH2)‐2‐Br‐(Ar1N?CH)C6H3 ((Ar1NCOAr2)Br, 3a , 3b , 3c , 3d ) and 3‐(2,6‐Me2C6H3SCH2)‐2‐Br‐(Ar1N?CH)C6H3 ((Ar1NCSMe)Br, 4a and 4b ) were synthesized and characterized. The reactions of [Ar1NCOAr2]Br/ [Ar1NCSMe]Br with nBuLi and the subsequent addition of the rare‐earth‐metal chlorides afforded their corresponding rare‐earth‐metal–pincer complexes, that is, [(Ar1NCOAr2)YCl2(thf)2] ( 5a , 5b , 5c , 5d ), [(Ar1NCOAr2)LuCl2(thf)2] ( 6a , 6d ), [(Ar1NCOAr2)GdCl2(thf)2] ( 7 ), [{(Ar1NCSMe)Y(μ‐Cl)}2{(μ‐Cl)Li(thf)2(μ‐Cl)}2] ( 8 , 9 ), and [{(Ar1NCSMe)Gd(μ‐Cl)}2{(μ‐Cl)Li(thf)2(μ‐Cl)}2] ( 10 , 11 ). These diamagnetic complexes were characterized by 1H and 13C NMR spectroscopy and the molecular structures of compounds 5a , 6a , 7 , and 10 were well‐established by X‐ray diffraction analysis. In compounds 5a , 6a , and 7 , all of the metal centers adopted distorted pentagonal bipyramidal geometries with the NCO donors and two oxygen atoms from the coordinated THF molecules in equatorial positions and the two chlorine atoms in apical positions. Complex 10 is a dimer in which the two equal moieties are linked by two chlorine atoms and two Cl? Li? Cl bridges. In each part, the gadolinium atom adopts a distorted pentagonal bipyramidal geometry. Activated with alkylaluminum and borate, the gadolinium and yttrium complexes showed various activities towards the polymerization of isoprene, thereby affording highly cis‐1,4‐selective polyisoprene, whilst the NCO? lutetium complexes were inert under the same conditions.  相似文献   

13.
The reaction of the imide–nitride complex [{Ti(η5‐C5Me5)(μ‐NH)}33‐N)] with potassium iodide in pyridine at room temperature affords the adduct di‐μ‐iodido‐1:1′κ4I‐bis{tri‐μ3‐imido‐1:2:3κ3N;1:2:4κ3N;1:3:4κ3N‐μ3‐nitrido‐2:3:4κ3N‐tris[2,3,4(η5)‐pentamethylcyclopentadienyl](pyridine‐1κN)‐tetrahedro‐potassiumtrititanium(IV)}, [K2Ti6(C10H15)6I2N2(NH)6(C5H5N)2] or [(C5H5N)(μ‐I)K{(μ3‐NH)3Ti35‐C5Me5)33‐N)}]2. The crystal structure contains two [KTi3N4] cube‐type units held together by two bridging I atoms. There is a centre of inversion located in the middle of this unprecedented discrete K2I2 unit. The geometry around K is best described as distorted trigonal prismatic, with three imide groups, two bridging I atoms and one pyridine ligand.  相似文献   

14.
The first four‐coordinate methanediide/alkyl lutetium complex (BODDI)Lu2(CH2SiMe3)22‐CHSiMe3)(THF)2 (BODDI=ArNC(Me)CHCOCHC(Me)NAr, Ar=2,6‐iPr2C6H3) ( 1 ) was synthesized by a thermolysis methodology through α‐H abstraction from a Lu–CH2SiMe3 group. Complex 1 reacted with equimolar 2,6‐iPrC6H3NH2 and Ph2C?O to give the corresponding lutetium bridging imido and oxo complexes (BODDI)Lu2(CH2SiMe3)22N‐2,6‐iPr2C6H3)(THF)2 ( 2 ) and (BODDI)Lu2(CH2SiMe3)22‐O)(THF)2 ( 3 ). Treatment of 3 with Ph2C?O (4 equiv) caused a rare insertion of Lu–μ2‐O bond into the C?O group to afford a diphenylmethyl diolate complex 4 . Reaction of 1 with PhN=C?O (2 equiv) led to the migration of SiMe3 to the amido nitrogen atom to give complex (BODDI)Lu2(CH2SiMe3)2‐μ‐{PhNC(O)CHC(O)NPh(SiMe3)‐κ3N,O,O}(THF) ( 5 ). Reaction of 1 with tBuN?C formed an unprecedented product (BODDI)Lu2(CH2SiMe3){μ2‐[η22tBuNC(=CH2)SiMe2CHC?NtBu‐κ1N]}(tBuN?C)2 ( 6 ) through a cascade reaction of N?C bond insertion, sequential cyclometalative γ‐(sp3)‐H activation, C?C bond formation, and rearrangement of the newly formed carbene intermediate. The possible mechanistic pathways between 1 , PhN?C?O, and tBuN?C were elucidated by DFT calculations.  相似文献   

15.
Treatment of [K(BIPMMesH)] (BIPMMes={C(PPh2NMes)2}2?; Mes=C6H2‐2,4,6‐Me3) with [UCl4(thf)3] (1 equiv) afforded [U(BIPMMesH)(Cl)3(thf)] ( 1 ), which generated [U(BIPMMes)(Cl)2(thf)2] ( 2 ), following treatment with benzyl potassium. Attempts to oxidise 2 resulted in intractable mixtures, ligand scrambling to give [U(BIPMMes)2] or the formation of [U(BIPMMesH)(O)2(Cl)(thf)] ( 3 ). The complex [U(BIPMDipp)(μ‐Cl)4(Li)2(OEt2)(tmeda)] ( 4 ) (BIPMDipp={C(PPh2NDipp)2}2?; Dipp=C6H3‐2,6‐iPr2; tmeda=N,N,N′,N′‐tetramethylethylenediamine) was prepared from [Li2(BIPMDipp)(tmeda)] and [UCl4(thf)3] and, following reflux in toluene, could be isolated as [U(BIPMDipp)(Cl)2(thf)2] ( 5 ). Treatment of 4 with iodine (0.5 equiv) afforded [U(BIPMDipp)(Cl)2(μ‐Cl)2(Li)(thf)2] ( 6 ). Complex 6 resists oxidation, and treating 4 or 5 with N‐oxides gives [{U(BIPMDippH)(O)2‐ (μ‐Cl)2Li(tmeda)] ( 7 ) and [{U(BIPMDippH)(O)2(μ‐Cl)}2] ( 8 ). Treatment of 4 with tBuOLi (3 equiv) and I2 (1 equiv) gives [U(BIPMDipp)(OtBu)3(I)] ( 9 ), which represents an exceptionally rare example of a crystallographically authenticated uranium(VI)–carbon σ bond. Although 9 appears sterically saturated, it decomposes over time to give [U(BIPMDipp)(OtBu)3]. Complex 4 reacts with PhCOtBu and Ph2CO to form [U(BIPMDipp)(μ‐Cl)4(Li)2(tmeda)(OCPhtBu)] ( 10 ) and [U(BIPMDipp)(Cl)(μ‐Cl)2(Li)(tmeda)(OCPh2)] ( 11 ). In contrast, complex 5 does not react with PhCOtBu and Ph2CO, which we attribute to steric blocking. However, complexes 5 and 6 react with PhCHO to afford (DippNPPh2)2C?C(H)Ph ( 12 ). Complex 9 does not react with PhCOtBu, Ph2CO or PhCHO; this is attributed to steric blocking. Theoretical calculations have enabled a qualitative bracketing of the extent of covalency in early‐metal carbenes as a function of metal, oxidation state and the number of phosphanyl substituents, revealing modest covalent contributions to U?C double bonds.  相似文献   

16.
A novel bimetallic Cr3Yb3 coordination compound containing a 3d-4f heterometallic Cr2Yb3 cationic cluster has been synthesized and structurally characterized. The crystal structure was determined by X-ray analysis. Results denote that the complex consists of an original [Cr 2 III Yb 3 III ]3+ moiety with a trigonal-bipyramidal topology of the [Cr2Yb3(μ-OOCCH3)6(μ-OH)6(H2O)6]3+ core, an isolated [CrIII(CN)6]3? anion, and four molecular neutral 4,4′-bipyridene (Bipy) ligands, namely, [Cr2Yb3(μ-OOCCH3)6(μ-OH)6(H2O)6][Cr(CN)6] · 4Bipy · 13H2O.  相似文献   

17.
The addition of [(L)4Ca(I)Mes] (Lewis base L=thf, Et2O) to mesityl copper(I) and the transmetalation reaction of mesityl copper(I) with activated calcium are suitable pathways for the synthesis of dimesityl cuprates(I) of calcium. However, the structures of the calcium cuprates(I) depend on the preparative procedure. The transmetalation reaction leads to the formation of [Mes‐Cu‐Mes]? anions whereas the addition yields dinuclear [(Mes‐Cu)2(μ‐Mes)]? anions. The solvent‐separated counterions are [Ca(thf)6]2+ and [(thf)5CaI]+, respectively. In contrast to these findings, the addition of [(L)4Ca(I)Mes] to mesityl copper(I) in an Et2O/toluene mixture led to formation of tetrameric solvent‐free iodocalcium dimesityl cuprate(I) [ICa(μ‐η16‐Mes2Cu)]4, representing a rare example of a heavy Normant‐type organocuprate.  相似文献   

18.
In the title compound, [CrBr2(C5H14N2)2]2Br2·HClO4·6H2O, there are two independent CrIII complex cations which are conformational isomers of each other. The Cr atoms lie respectively on a center of symmetry and on a mirror plane and have octahedral environments, coordinated by the N atoms of two 2,2‐di­methylpropane‐1,3‐diamine ligands and by two Br atoms in trans positions. The Cr—N and Cr—Br bond lengths are in the ranges 2.078 (3)–2.089 (3) and 2.4495 (9)–2.5017 (9) Å, respectively. The crystal structure consists of two CrIII complex cations, two Br? anions, a (ClO4)? anion and an [H13O6]+ hydrogen‐bonded cluster cation.  相似文献   

19.
Sigma‐ versus Pi‐Coordination in Bis‐indenyl‐ and Bis‐2‐methallyl Imido Complexes of Hexavalent Molybdenum and Tungsten: DF‐Calculations and Crystal Structure Analysis Bis‐indenyl and bis‐2‐methallyl imido complexes [(C9H7)2M(NR)2] (M = Mo, W; R = tert‐butyl, mesityl) 1 — 4 and [(H3C‐C3H4)2M(NtBu)2] (M = Mo, W) 6 , 7 have been prepared starting from [Mo(NtBu)2Cl2] or [M(NR)2Cl2L2] (M = W, R = tBu, L = py; M = Mo, W, R = Mes, L2 = dme) and indenyl lithium or 2‐methallyl magnesium bromide, respectively. According to spectroscopic data and the crystal structure of 4 there are two different coordination modes of the indenyl ligands, [(η3‐C9H7)M(NR)21‐C9H7)], in solution as well as in the solid state. These compounds show fluxional rearrangements in solution, namely σ, π‐exchange of η1‐ and η3‐coordinated ligands. Similar behavior has been observed for the 2‐methallyl complexes 6 and 7 in solution. In agreement with experimental observations, DF calculations on models of 6 strongly suggest a (σ+π)‐coordination mode of the η3‐coordinated ligand.  相似文献   

20.
Divalent ytterbium iodide [LYb(μ‐I)(THF)]2 ( 1 ; L = [MeC(NDIPP)CHC(Me)NCH2CH2NMe2]?, DIPP = 2,6‐(iPr)2C6H3) was synthesized and its reactivity was studied. Complex 1 was synthesized by salt metathesis of YbI2(THF)2 with the potassium salt of ligand (KL) in high yield. In the reactions with trimethylsilyl azide, azobenzene, sulfur and diphenyl disulfide, complex 1 acts as a 2e reductant. In the reaction with CO2, the central carbon atom of β‐diketiminato backbone in 1 nucleophilically attacks the CO2 molecule to give a divalent ytterbium carboxylate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号