首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypochlorous acid (HOCl), a reactive oxygen species (ROS), plays a significant biological role in living systems. However, abnormal levels of HOCl are implicated in many inflammation‐associated diseases. Therefore, the detection of HOCl is of great importance. In this work, we describe the HOCl‐promoted cyclization of rhodamine‐thiosemicarbazides to rhodamine‐oxadiazoles, which is then exploited as a novel design strategy for the development of a new fluorescence turn‐on HOCl probe 2 . On the basis of the fluorescence resonance energy transfer (FRET) signaling mechanism, 2 was further converted into 1 a and 1 b , which represent the first paradigm of FRET‐based ratiometric fluorescent HOCl probes. The outstanding features of 1 a and 1 b include well‐resolved emission peaks, high sensitivity, high selectivity, good functionality at physiological pH, rapid response, low cytotoxicity, and good cell‐membrane permeability. Furthermore, these excellent attributes enable us to demonstrate, for the first time, the ratiometric imaging of endogenously produced HOCl in living cells by using these novel ratiometric probes. We expect that 1 a and 1 b will be useful molecular tools for studies of HOCl biology. In addition, the HOCl‐promoted cyclization reaction of rhodamine‐thiosemicarbazides to rhodamine‐oxadiazoles should be widely applicable for the development of different types of fluorescent HOCl probes.  相似文献   

2.
Two closely related phenyl selenyl based boron‐dipyrromethene (BODIPY) turn‐on fluorescent probes for the detection of hypochlorous acid (HOCl) were synthesized for studies in chemical biology; emission intensity is modulated by a photoinduced electron‐transfer (PET) process. Probe 2 intrinsically shows a negligible background signal; however, after reaction with HOCl, chemical oxidation of selenium forecloses the PET process, which evokes a significant increase in fluorescence intensity. The fluorescence intensity of probes 1 and 2 with HOCl involves an ~18 and ~50‐fold enhancement compared with the respective responses from other reactive oxygen/nitrogen species (ROS/RNS) and low detection limits (30.9 nm for 1 and 4.5 nm for 2 ). Both probes show a very fast response with HOCl; emission intensity reached a maximum within 1 s. These probes show high selectivity for HOCl, as confirmed by confocal microscopy imaging when testing with RAW264.7 and MCF‐7 cells.  相似文献   

3.
Herein, a red‐emitting fluorescent probe DM‐BDP‐OCl containing a para‐DMTC benzyl pyridinium moiety at the meso position of BODIPY as self‐immolative portion for the detection of HOCl was designed and synthesized. DM‐BDP‐OCl exhibited excellent specificity and a fast response for HOCl beyond other ROS/RNS. It was used for the accurately measurable detection of HOCl with a linear range from 0 μM to 50 μM, and the detection limit for HOCl reached 60 nM. Moreover, the probe could directly monitor fluctuations of exogenous and endogenous HOCl in living HeLa and RAW 264.7 cells. This work provided a powerful and convenient imaging tool for probing pathological and physiological actions of HOCl.  相似文献   

4.
The cytosolic conversion of therapeutically relevant nucleosides into bioactive triphosphates is often hampered by the inefficiency of the first kinase‐mediated step. Nucleoside monophosphate prodrugs can be used to bypass this limitation. Herein we describe a novel cyclic‐disulfide class of nucleoside monophosphate prodrugs with a cytosol‐specific, reductive release trigger. The key event, a charge‐dissipating reduction‐triggered cyclodeesterification leads to robust cytosolic production of the cyclic 3′,5′‐monophosphate for downstream enzymatic processing. The antiviral competence of the platform was demonstrated with an O‐benzyl‐1,2‐dithiane‐4,5‐diol ester of 2′‐C‐methyluridine‐3′,5′‐phosphate. Both in vitro and in vivo comparison with the clinically efficacious ProTide prodrug of 2′‐deoxy‐2′‐α‐fluoro‐β‐C‐methyluridine is provided. The cytosolic specificity of the release allows for a wide range of potential applications, from tissue‐targeted drug delivery to intracellular imaging.  相似文献   

5.
We report the first electrochemical system for the detection of single‐nucleotide polymorphisms (SNPs) that can accurately discriminate homozygous and heterozygous genotypes using microfluidics technology. To achieve this, our system performs real‐time melting‐curve analysis of surface‐immobilized hybridization probes. As an example, we used our sensor to analyze two SNPs in the apolipoprotein E (ApoE) gene, where homozygous and heterozygous mutations greatly affect the risk of late‐onset Alzheimer’s disease. Using probes specific for each SNP, we simultaneously acquired melting curves for probe–target duplexes at two different loci and thereby accurately distinguish all six possible ApoE allele combinations. Since the design of our device and probes can be readily adapted for targeting other loci, we believe that our method offers a modular platform for the diagnosis of SNP‐based diseases and personalized medicine.  相似文献   

6.
The ability to rationally design and construct a platform technology to develop new platinum(IV) [PtIV] prodrugs with functionalities for installation of targeting moieties, delivery systems, fluorescent reporters from a single precursor with the ability to release biologically active cisplatin by using well‐defined chemistry is critical for discovering new platinum‐based therapeutics. With limited numbers of possibilities considering the sensitivity of PtIV centers, we used a strain‐promoted azide–alkyne cycloaddition approach to provide a platform, in which new functionalities can easily be installed on cisplatin prodrugs from a single PtIV precursor. The ability of this platform to be incorporated in nanodelivery vehicle and conjugation to fluorescent reporters were also investigated.  相似文献   

7.
Hypochlorous acid (HOCl), a reactive oxygen species (ROS), plays a significant biological role in living systems. However, abnormal levels of HOCl are implicated in many inflammation-associated diseases. Therefore, the detection of HOCl is of great importance. In this work, we describe the HOCl-promoted cyclization of rhodamine-thiosemicarbazides to rhodamine-oxadiazoles, which is then exploited as a novel design strategy for the development of a new fluorescence turn-on HOCl probe 2. On the basis of the fluorescence resonance energy transfer (FRET) signaling mechanism, 2 was further converted into 1a and 1b, which represent the first paradigm of FRET-based ratiometric fluorescent HOCl probes. The outstanding features of 1a and 1b include well-resolved emission peaks, high sensitivity, high selectivity, good functionality at physiological pH, rapid response, low cytotoxicity, and good cell-membrane permeability. Furthermore, these excellent attributes enable us to demonstrate, for the first time, the ratiometric imaging of endogenously produced HOCl in living cells by using these novel ratiometric probes. We expect that 1a and 1b will be useful molecular tools for studies of HOCl biology. In addition, the HOCl-promoted cyclization reaction of rhodamine-thiosemicarbazides to rhodamine-oxadiazoles should be widely applicable for the development of different types of fluorescent HOCl probes.  相似文献   

8.
Specific turn‐on detection of enzyme activities is of fundamental importance in drug discovery research, as well as medical diagnostics. Although magnetic resonance imaging (MRI) is one of the most powerful techniques for noninvasive visualization of enzyme activity, both in vivo and ex vivo, promising strategies for imaging specific enzymes with high contrast have been very limited to date. We report herein a novel signal‐amplifiable self‐assembling 19F NMR/MRI probe for turn‐on detection and imaging of specific enzymatic activity. In NMR spectroscopy, these designed probes are “silent” when aggregated, but exhibit a disassembly driven turn‐on signal change upon cleavage of the substrate part by the catalytic enzyme. Using these 19F probes, nanomolar levels of two different target enzymes, nitroreductase (NTR) and matrix metalloproteinase (MMP), could be detected and visualized by 19F NMR spectroscopy and MRI. Furthermore, we have succeeded in imaging the activity of endogenously secreted MMP in cultured media of tumor cells by 19F MRI, depending on the cell lines and the cellular conditions. These results clearly demonstrate that our turn‐on 19F probes may serve as a screening platform for the activity of MMPs.  相似文献   

9.
The co‐delivery of photosensitizers with prodrugs sensitive to reactive oxygen species (ROS) for light‐triggered ROS generation and cascaded prodrug activation has drawn tremendous attention. However, the absence of a feasible method to deliver the two components at a precise ratio has impaired the application potential. Herein, we report an efficient method to produce a nanosized platform for the delivery of an optimized ratio of the two components by the means of host–guest strategy for maximizing the combination therapy efficacy of cancer treatment. The key features of this host–guest strategy for the combination therapy are that the ratio between photosensitizer and ROS‐sensitive prodrug can be easily tuned, near‐infrared (NIR) irradiation can sensitize the photosensitizer and activate the paclitaxel prodrug for its release, and the accumulation process can be tracked by NIR imaging to maximize the efficacy of photodynamic and chemotherapy.  相似文献   

10.
A strategy to deliver a well‐defined persulfide species in a biological medium is described. Under near physiological conditions, the persulfide prodrug can be activated by an esterase to generate a “hydroxymethyl persulfide” intermediate, which rapidly collapses to form a defined persulfide. Such persulfide prodrugs can be used either as chemical tools to study persulfide chemistry and biology or for future development as H2S‐based therapeutic reagents. Using the persulfide prodrugs developed in this study, the reactivity between S ‐methyl methanethiosulfonate (MMTS) with persulfide was unambiguously demonstrated. Furthermore, a representative prodrug exhibited potent cardioprotective effects in a murine model of myocardial ischemia‐reperfusion (MI/R) injury with a bell shape therapeutic profile.  相似文献   

11.
Integration of imaging data across different molecular target types can provide in‐depth insight into cell physiology and pathology, but remains challenging owing to poor compatibility between target‐type‐specific labeling methods. We show that cross‐platform imaging analysis can be readily achieved through DNA encoding of molecular targets, which translates the molecular identity of various target types into a uniform in situ array of ssDNA tags for subsequent labeling with complementary imaging probes. The concept was demonstrated through multiplexed imaging of mRNAs and their corresponding proteins with multicolor quantum dots. The results reveal heterogeneity of cell transfection with siRNA and outline disparity in RNA interference (RNAi) kinetics at the level of both the mRNA and the encoded protein.  相似文献   

12.
Limited therapeutic efficiency and severe side effects in patients are two major issues existing in current chemotherapy of cancers in clinic. To design a proper theranostic platform seems thus quite needed to target cancer cells accurately by bioimaging and simultaneously release drugs on demand without premature leakage. A novel ZnO‐functionalized upconverting nanotheranostic platform has been fabricated for clear multi‐modality bioimaging (upconversion luminescence (UCL), computed tomography (CT), and magnetic resonance imaging (MRI)) and specific pH‐triggered on‐demand drug release. In our theranostic platform multi‐modality imaging provides much more detailed and exact information for cancer diagnosis than single‐modality imaging. In addition, ZnO can play the role of a “gatekeeper” to efficiently block the drug in the mesopores of the as‐prepared agents until it is dissolved in the acidic environment around tumors to realize sustained release of the drug. More importantly, the biodegradable ZnO, which is non‐toxic against normal tissues, endows the as‐prepared agents with high therapeutic effectiveness but very low side effects. These findings are of great interests and will inspire us much to develop novel effective imaging‐guided on‐demand chemotherapies in cancer treatment.  相似文献   

13.
Bladder cancer (BC) is a prevalent disease with high morbidity and mortality; however, in vivo optical imaging of BC remains challenging because of the lack of cancer‐specific optical agents with high renal clearance. Herein, a macromolecular reporter (CyP1) was synthesized for real‐time near‐infrared fluorescence (NIRF) imaging and urinalysis of BC in living mice. Because of the high renal clearance (ca. 94 % of the injection dosage at 24 h post‐injection) and its cancer biomarker (APN=aminopeptidase N) specificity, CyP1 can be efficiently transported to the bladder and specially turn on its NIRF signal to report the detection of BC in living mice. Moreover, CyP1 can be used for optical urinalysis, permitting the ex vivo tracking of tumor progression for therapeutic evaluation and easy translation of CyP2 as an in vitro diagnostic assay. This study not only provides new opportunities for non‐invasive diagnosis of BC, but also reveals useful guidelines for the development of molecular reporters for the detection of bladder diseases.  相似文献   

14.
We developed a smartphone‐based on‐site nucleic acid testing (NAT) platform that can image and analyze lateral flow nucleic acid assays at point‐of‐care settings. An inexpensive add‐on was devised to run lateral flow assays while providing homogeneous ambient light for imaging. In addition, an Android app with a user‐friendly interface was developed for the result analysis and management. Linear color calibration is implemented inside the app to minimize the colorimetric reaction difference between smartphones. A relationship function between nucleic acid concentration and colorimetric reaction was established and evaluated by leave‐one‐out cross validation. The predicted concentration and true concentration showed a good agreement with an R‐squared value of 0.96. This smartphone‐based NAT platform can be used to diagnose infectious diseases and monitor disease progression, and assess treatment efficacy, especially for resource‐limited settings.  相似文献   

15.
Early detection of skin diseases is imperative for their effective treatment. However, fluorescence molecular probes that allow this are rare. The first activatable near‐infrared (NIR) fluorescent molecular probe is reported for sensitive imaging of keloid cells, skin cells from abnormal scar fibrous lesions. As keloid cells have high expression levels of fibroblast activation protein‐alpha (FAPα), the probe (FNP1) is designed to have a caged NIR dye and a FAPα‐cleavable peptide substrate linked by a self‐immolative segment. FNP1 can quickly and specifically turn on its fluorescence at 710 nm by 45‐fold in the presence of FAPα, allowing it to effectively recognize keloid cells from normal skin cells. Integration of FNP1 with a simple microneedle‐assisted topical application enables sensitive detection of keloid cells in metabolically‐active human skin tissue with a theoretical limit of detection down to 20 000 cells.  相似文献   

16.
Simultaneously acquiring chemical and topographical information within a single cell at nanoscale resolutions is vital to cellular biology, yet it remains a great challenge due to limited lateral resolutions and detection sensitivities. Herein, the development of near‐field desorption mass spectrometry for correlated chemical and topographical imaging is reported, thereby bridging the gap between laser‐based mass spectrometry (MS) methods and multimodal single‐cell imaging. Using this integrated platform, an imaging resolution of 250 nm and 3D topographically reconstructed chemical single‐cell imaging were achieved. This technique offers more in‐depth cellular information than micrometer‐range laser‐based MS imaging methods. Considering the simplicity and compact size of the near‐field device, this technique can be introduced to MALDI‐MS, expanding the multimodal abilities of MS at nanoscale resolutions.  相似文献   

17.
Synthetic molecules that modulate and probe biological events are critical tools in chemical biology. Utilizing combinatorial and diversity‐oriented synthetic strategies, access to large numbers of small molecules is becoming more and more feasible, and research groups in this field can take advantage of the power of chemical diversity. Since the majority of early studies were focused on the discovery of compounds that perturb protein functions, diversity‐based approaches are often considered as therapeutic lead discovery tactics. However, the diversity‐oriented approach can also be applied to advance distinct aims, such as target protein identification, or the development of imaging probes and sensors. This review provides a personal perspective of the chemical‐diversity‐based approach and how this principle can be adapted to various chemical biology studies.  相似文献   

18.
A novel and highly efficient dual‐targeting platform was designed to ensure targeted in vivo delivery of dual‐action PtIV prodrugs. The dual targeting was established by liposomal encapsulation of PtIV complexes, thereby utilizing the enhanced permeability and retention (EPR) effect as the first stage of targeting to attain a high accumulation of the drug‐loaded liposomes in the tumor. After the release of the PtIV prodrug inside cancer cells, a second stage of targeting directed a portion of the PtIV prodrugs to the mitochondria. Upon intracellular reduction, these PtIV prodrugs released two bioactive molecules, acting both on the mitochondrial and on the nuclear DNA. Our PtIV system showed excellent activity in vitro and in vivo, characterized by a cytotoxicity in a low micromolar range and complete tumor remission, respectively. Notably, marked in vivo activity was accompanied by reduced kidney toxicity, highlighting the unique therapeutic potential of our novel dual‐targeting dual‐action platform.  相似文献   

19.
A pinacol boronate caged NIAD-4 derivative was demonstrated to be a near-infrared fluorescent probe for fast and selective detection of hypochlorite over other ROS species.  相似文献   

20.
N‐Heterocyclic carbene (NHC) boranes undergo oxidative hydrolysis to give imidazolium salts with excellent kinetic selectivity for HOCl over other reactive oxygen species (ROS), including peroxides and peroxynitrite. Selectivity for HOCl results from the electrophilic oxidation mechanism of NHC boranes, which stands in contrast to the nucleophilic oxidation mechanism of arylboronic acids with ROS. The change in polarity that accompanies the conversion of NHC boranes to imidazolium salts can control the formation of emissive excimers, forming the basis for the design of the first fluorescence probe for ROS based on the oxidation of B?H bonds. Two‐photon microscope (TPM) ratiometric imaging of HOCl in living cells and tissues is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号