首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel route was developed for synthesis of high potential 1H‐tetrazoles by using conventional method. Tetrazole scaffold is a promising pharmacophore fragment, frequently used in the development of various novel drugs. Here, the novel (Z)‐3‐(N‐alkyl‐indol‐3‐yl)‐2‐(1H‐tetrazole‐5‐yl)acrylates 5 ( a – i ) have been synthesized from (Z)‐ethyl‐3‐(1H‐indol‐3‐yl)2‐(1H‐tetrazol‐5‐yl)acrylates 4 ( a – c ) by using various alkylating agents such as Dimethyl Sulphate (DMS), Diethyl Sulphate (DES), and benzyl chloride; 4 ( a – c ) were synthesized from sodium azide in the presence of copper sulfate in dimethylformamide; 3 ( a – c ) have been prepared by Knoevenagel condensation of indole‐3‐carbaldehyde 1 ( a – c ) and ethylcyanoacetate 2 in the presence of L‐Proline as a catalyst at room temperature in ethanol for an hour. This is an efficient and clean click chemistry method that has various advantages such as easy workup, higher yields, shorter reaction times, and more economical.  相似文献   

2.
《中国化学》2018,36(6):481-486
Targeted drug delivery has been widely explored for efficient tumor therapy with desired efficacy but minimized side effects. It is widely known that large numbers of DNA‐toxins, such as doxorubicin, genes, reactive oxygen species, serving as therapeutic agents, can result in maximized therapeutic effects via the interaction directly with DNA helix. So after cellular uptake, these agents should be further delivered into cell nuclei to play their essential roles in damaging the DNA helix in cancer cells. Here, we demonstrate the first paradigm established in our laboratory in developing nuclear‐targeted drug delivery systems (DDSs) based on MSNs for enhanced therapeutic efficiency in the hope of speeding their translation into the clinics. Firstly, nuclear‐targeting DDSs based on MSNs, capable of intranuclear accumulation and drug release therein, were designed and constructed for the first time, resulting in much enhanced anticancer effects both in vitro and in vivo. Such an MSNs‐based and nuclear‐targeted drug/agent delivery strategy was further applied to overcome multidrug resistance (MDR) of malignant tumors, intra‐nuclearly deliver therapeutic genes, photosensitizers, radio‐enhancement agents and photothermal agents to realize efficient gene therapy, photodynamic therapy, radiation therapy and photothermal therapy, respectively.  相似文献   

3.
Dendritic polyglycerol‐co‐polycaprolactone (PG‐co‐PCL)‐derived block copolymers are synthesized and explored as nanoscale drug delivery platforms for a chemotherapeutic agent, gemcitabine (GEM), which is the cornerstone of therapy for pancreatic ductal adenocarcinoma (PDAC). Current treatment strategies with GEM result in suboptimal therapeutic outcome owing to microenvironmental resistance and rapid metabolic degradation of GEM. To address these challenges, physicochemical and cell‐biological properties of both covalently conjugated and non‐covalently stabilized variants of GEM‐containing PG‐co‐PCL architectures have been evaluated. Self‐assembly behavior, drug loading and release capacity, cytotoxicity, and cellular uptake properties of these constructs in monolayer and in spheroid cultures of PDAC cells are investigated. To realize the covalently conjugated carrier systems, GEM, in conjunction with a tertiary amine, is attached to the polycarbonate block grafted from the PG‐co‐PCL core. It is observed that pH‐dependent ionization properties of these amine side‐chains direct the formation of self‐assembly of block copolymers in the form of nanoparticles. For non‐covalent encapsulation, a facile “solvent‐shifting” technique is adopted. Fabrication techniques are found to control colloidal and cellular properties of GEM‐loaded nanoconstructs. The feasibility and potential of these newly developed architectures for designing carrier systems for GEM to achieve augmented prognosis for pancreatic cancer are reported.  相似文献   

4.
《中国化学》2017,35(11):1711-1716
A fluorescent turn‐on probe for specifically targeting γ ‐glutamyltranspeptidase (GGT ) was designed and synthesized by integrating boron‐dipyrromethene (BODIPY ) as a chromophore and glutathione (GSH ) as the GGT substrate. GGT ‐catalyzed the cleavage of the γ ‐glutamyl bond and generated the aromatic hydrocarbon transfer between the sulfur and the nitrogen atom in BODIPY , leading to distinct optical changes. Such specific responsiveness provides an easily distinguishable fluorescence signal to visualize the GGT activity in living cells and differentiate GGT ‐positive cancer cells from GGT ‐negative cells.  相似文献   

5.
《化学:亚洲杂志》2018,13(19):2923-2933
A family of novel imine‐N‐heterocyclic carbene ruthenium(II) complexes of the general formula [(η6p‐cymene)Ru(C^N)Cl]PF6 (where C^N is an imine‐N‐heterocyclic carbene chelating ligand with varying substituents) have been prepared and characterized. In this imine‐N‐heterocyclic carbene chelating ligand framework, there are three potential sites that can be modified, which distinguishes this class of ligand and provides a body of flexibilities and opportunities to tune the cytotoxicity of these ruthenium(II) complexes. The influence of substituent effects of three tunable domains on the anticancer activity and catalytic ability in converting coenzyme NADH to NAD+ is investigated. This family of complexes displays an exceedingly distinct anticancer activity against A549 cancer cells, despite their close structural similarity. Complex 9 shows the highest anticancer activity in this series against A549 cancer cells (IC50=14.36 μm ), with an approximately 1.5‐fold better activity than the clinical platinum drug cisplatin (IC50=21.30 μm ) in A549 cancer cells. Mechanistic studies reveal that complex 9 mediates cell death mainly through cell stress, including cell cycle arrest, inducing apoptosis, increasing intracellular reactive oxygen species (ROS) levels, and depolarization of the mitochondrial membrane potential (MMP). Furthermore, lysosomal damage is also detected by confocal microscopy.  相似文献   

6.
Diphospho‐myo‐inositol phosphates (PP‐InsPy) are an important class of cellular messengers. Thus far, no method for the transport of PP‐InsPy into living cells is available. Owing to their high negative charge density, PP‐InsPy will not cross the cell membrane. A strategy to circumvent this issue involves the generation of precursors in which the negative charges are masked with biolabile groups. A PP‐InsPy prometabolite would require twelve to thirteen biolabile groups, which need to be cleaved by cellular enzymes to release the parent molecules. Such densely modified prometabolites of phosphate esters and anhydrides have never been reported to date. This study discloses the synthesis of such agents and an analysis of their metabolism in tissue homogenates by gel electrophoresis. The acetoxybenzyl‐protected system is capable of releasing 5‐PP‐InsP5 in mammalian cell/tissue homogenates within a few minutes and can be used to release 5‐PP‐InsP5 inside cells. These molecules will serve as a platform for the development of fundamental tools required to study PP‐InsPy physiology.  相似文献   

7.
Hollow‐structured nanomaterials with fluorescent properties are extremely attractive for image‐guided cancer therapy. In this paper, sub‐100 nm and hydrophilic NaYF4 upconversion (UC) hollow nanospheres (HNSs) with multicolor UC luminescence and drug‐delivery properties were successfully prepared by a facile one‐pot template‐free hydrothermal route using polyetherimide (PEI) polymer as the stabilizing agent. XRD, SEM, TEM, and N2‐adsorption/desorption were used to characterize the as‐obtained products. The growth mechanism of the HNSs has been systematically investigated on the basis of the Ostwald ripening. Under 980 nm excitation, UC emissions of HNSs can be tuned by a simple change of the concentration or combination of various upconverters. As a result, the PEI‐coated HNSs could be used as efficient probes for in vitro upconversion luminescence (UCL) cell imaging. Furthermore, a doxorubicin storage/release behavior and cancer‐cell‐killing ability investigation reveal that the product has the potential to be a drug carrier for cancer therapy.  相似文献   

8.
An efficient zinc chloride‐catalyzed one‐pot synthesis of 5,8‐dihydro‐5,8‐dioxo‐4H‐chromene derivatives have been achieved by the reaction of 2,5‐dihydroxy‐6‐undecyl‐1,4‐bezoquinone, cyanothioacetamide, and aromaticaldehyde, in EtOH at room temperature. The structures of the products were characterized by IR, 1H‐NMR, mass spectra, and elemental analyses. J. Heterocyclic Chem., (2011).  相似文献   

9.
In our continuing search for potential anticancer candidates, 2‐(3‐methoxyphenyl)‐6‐pyrrolidinyl‐4‐quinazolinone ( JJC‐1 ) was selected as the lead compound. Starting 5‐pyrrolidinyl‐2‐aminobenzamide was prepared using standard methodology from 5‐chloro‐2‐nitrobenzoic acid by reaction with SOCl2, NH3, pyrrolidine, and H2. The starting benzamide then was reacted with 2‐substituted benzaldehyde or benzoyl chloride in N,N‐dimethylacetamide (DMAC) in the presence of NaHSO3 at 150 °C. Thermal cyclodehydration/dehydrogenation gave the target 6‐pyrrolidinyl‐2‐(2‐substituted phenyl)‐4‐quinazolinones ( 15–22 ). These target compounds were assayed for their cytotoxicity in vitro against six cancer cell lines, including human monocytic leukemia cells (U937), mouse monocytic leukemia cells (WEHI‐3), human hepatoma cells (HepG2, Hep3B) and human lung carcinoma cells (A549, CH27). Most of them exhibited significant cytotoxic effect toward U937 and WEHI‐3 cells, with EC50 values ranging from 0.30 to 10.10 μM. Compound 19 was investigated further for its action mechanisms. Preliminary findings indicated that compound 19 induced G2/M arrest and apoptosis on U937 cells.  相似文献   

10.
The development of stimuli‐responsive polymeric nanocarriers could significantly enhance drug bioavailability due to improved pharmacokinetics and biodistribution. However, in the drug delivery process, the poor cell uptake of drug‐loaded carriers has greatly limited the therapeutic efficiency for anti‐cancer applications. Herein, 2,3‐dimethylmaleic anhydride (DMMA) is engineered into the well‐defined biodegradable amphiphilic block copolymer poly(D,L‐lactide)‐block‐poly(2‐aminoethyl methacrylate) (PLA‐b‐PAEMA) to construct a tumor‐acidity activated nanocarrier (PLA‐b‐PAEMA/DMMA) for potential tumor therapy. After the loading of positively charged DOX·HCl into the negatively charged corona structure through electrostatic attraction, this carrier is expected to prolong the blood circulation time and smartly convert surface charge from negative to positive for enhanced tumor cell uptake and targeted drug release. Furthermore, this carrier exhibits additional cytotoxicity for tumor cells after the tumor‐acidity activated surface charge‐conversion from negative to positive. Thus, this smart carrier is a feasible candidate for potential cancer therapy.

  相似文献   


11.
A highly efficient, simple, and clean single‐step sonosynthetic procedure has been sophisticated for assembling new series of mono‐ and bis‐pyridine dicarbonitriles from ketones, HCl, and tetracyanoethylene. The presented protocol is applicable for the preparation of a broad range of uniquely substituted pyridine dicarbonitriles and seems to be superior in comparison with other previously reported methods. The antiproliferative impact of the newly synthesized derivatives was screened towards three representative cancer cell lines (MCF‐7, A549, and HCT116). Most of the evaluated derivatives showed a moderate to excellent anti‐proliferative activity towards the selected cell lines. Of these, compounds 4h , 4k , 10 , 12a , and 12b showed both potent anticancer activity (IC50<10 μM) and lower cytotoxic effect (IC50 > 58 μM) on non‐tumorigenic cells (MCF‐10A and NCM460), suggesting their promising potential to be lead molecules for future antitumor drug discovery. The structure‐activity relationships have been also discussed. Moreover, quantum chemical studies based on Density Functional Theory (DFT) of the synthesized compounds were investigated and found to be consistent with the in vitro inhibitory activities.  相似文献   

12.
Accomplishing efficient delivery of a nanomedicine to the tumor site will encounter two contradictions as follows: 1) a contradiction between prolonged circulation time and endocytosis by cancer cells; 2) a dilemma between the stability of nanomedicine during blood circulation and intracellular drug release. While developing a nanomedicine which can solve the above two contradictions simultaneously is still a challenge, here, a multi‐stimuli‐responsive polymeric prodrug (PLys‐co‐(PLys‐DA)‐co‐(PLys‐SS‐PTX))‐b‐PLGLAG‐mPEG (P‐PEP‐SS‐PTX‐DA) is synthesized which is multi‐sensitive to overexpressed matrix metalloproteinase‐2 (MMP‐2), low pH, and high concentration of glutathione in tumors. The P‐PEP‐SS‐PTX‐DA can be dePEGylated and reversed from negative at normal physiological pH to positive charge at tumor extracellular microenvironment; in this way, it can solve the contradiction between prolonged circulation time and endocytosis by cancer cells. Owing to the high reductive conditions in cancer cells, P‐PEP‐SS‐PTX‐DA is ruptured to release paclitaxel (PTX) intracellular efficiently; therefore, it can resolve the dilemma between the stability of nanomedicine during blood circulation and intracellular drug release. These indicate that the multi‐stimuli‐responsive polymeric prodrug has potential application prospects in drug delivery and cancer therapy.  相似文献   

13.
There is considerable interest in the development of novel and more efficient delivery systems for improving the efficacy of photodynamic therapy (PDT). The authors in this highlighted issue describe the synthesis and the photobiological characterizations of two photosensitizer (PS) conjugates based on β‐carboline derivatives covalently conjugated to folic acid (FA) coupled to bovine serum albumin (BSA) as a carrier system specifically targeting cancer cells overexpressing FA receptor alpha (FRα). Accordingly, only the FA–BSA–β‐carboline conjugates are internalized specifically in FRα‐positive cells and are proved to be phototoxic. On the other hand, albumin–β‐carboline conjugates without FA or β‐carboline derivatives alone are not internalized and nontoxic. This conjugate is among the first to produce a conjugate composed of a PS and FA molecules that are directly conjugated to BSA. In addition, the in vitro studies are the first evidence that directly conjugated FA‐BSA can be used as carriers to selectively enhance cytotoxicity by PDT relative to unmodified PS or nontargeted BSA‐PS. This strategy is a positive step forward for the covalent design and construction of a photodynamic nanomedicine for FR‐positive tumors.  相似文献   

14.
《Electroanalysis》2006,18(9):888-893
A poly(vinyl chloride)‐based membrane of dimethyl 1‐acetyl‐8‐oxo‐2,8‐dihydro‐1H‐pyra‐zolo[5,1‐a]isoindole‐2,3‐dicarboxylate as a neutral carrier with sodium tetraphenylborate (NaTPB) as an anion excluder and 2‐nitrophenyl octyl ether (NPOE) as plasticizer was prepared and investigated as a Ba(II)‐selective electrode. The electrode exhibits a Nernstian slope of 29.7±0.4 mV per decade over a wide concentration range (1.0×10?6 to 1.0×10?1 M) with a detection limit of 7.6×10?7 M between pH 3.0 and 11.0. The response time of the sensor is about 10 s and it can be used over a period of 2 months without any divergence in potential. The proposed membrane sensor revealed good selectivity for Ba(II) over a wide variety of other metal ions. It was successfully used in direct determination of barium ions in industrial wastewater samples.  相似文献   

15.
《Electroanalysis》2004,16(16):1311-1317
The determination of some toxic metals by stripping chronopotentiometry with a supporting solution having an unconventional composition has been investigated with the aim of using such components in disposable measuring cells preservable in dry state and quite ready for use, only needing addition of a small volume of sample. The new supporting solution is prepared with a solid strong acid, p‐toluenesulfonic acid, in the place of the inorganic acids commonly used to improve the cation availability. The other components are, as usual, sodium chloride, which fixes the potential of the screen‐printed silver – silver chloride reference electrode, and mercury(II) chloride as the plating agent. This supporting solution has been tested in batch measurements with the mercury film glassy carbon electrode as well as with screen‐printed carbon‐ink electrodes, either with mercury film or bare. The physical shape of the mercury layer electrolytically deposited on screen‐printed carbon‐ink electrodes from a supporting solution containing 0.1 M p‐toluenesulfonic acid and 0.1 M sodium chloride has been investigated by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) microanalysis. In chronopotentiometric stripping p‐toluenesulfonic acid performs as well as the usual inorganic strong acids, particularly in terms of sensitivity. At 0.1 mol dm?3 it proved very suitable for the determination of toxic metals, in particular lead(II), at levels down to a few μg dm?3. The overall results appear promising and can open new avenues for preparing disposable cells for on‐field stripping chronopotentiometric determination of toxic metals.  相似文献   

16.
Mesoporous silica SBA‐15 functionalized with N‐methylpyrrolidonium‐zinc chloride based deep eutectic solvent (DES) is found to be a more efficient and reusable catalyst for a convenient N‐formylation of a variety of amines at room temperature. N‐Formylation of primary, secondary as well as heterocyclic amines have been carried out in good to excellent yields by treatment with formic acid in low loading of DES/SBA‐15 an environmentally benign catalyst for the first time. The DES/SBA‐15 catalyst, which possesses both Brønsted and Lewis acidities as well as an active SBA‐15 support, makes this procedure quite simple, reusable, more convenient and practical. This catalyst was tolerant of a wide range of functional groups, and it can be reused for four runs without obvious deactivation.  相似文献   

17.
Amphiphilic hyperbranched polyprodrugs (DOX‐S‐S‐PEG) with drug repeat units in hydrophobic core linked by disulfide bonds were developed as drug self‐delivery systems for cancer therapy. The hydroxyl groups and the amine group in doxorubicin (DOX) were linked by 3,3′‐dithiodipropanoic acid as hydrophobic hyperbranched cores, then amino‐terminated polyethylene glycol monomethyl ether (mPEG‐NH2) as hydrophilic shell was linked to hydrophobic cores to form amphiphilic and glutathione (GSH)‐responsive micelle of hyperbranched polyprodrugs. The amphiphilic micelles can be disrupted under GSH (1 mg mL?1) circumstance. Cell viability of A549 cells and 293T cells was evaluated by CCK‐8 and Muse Annexin V & Dead Cell Kit. The disrupted polyprodrugs maintained drug activity for killing tumor cells. Meanwhile, the undisrupted polyprodrugs possessed low cytotoxicity to normal cells. The cell uptake experiments showed that the micelles of DOX‐S‐S‐PEG were taken up by A549 cells and distributed to cell nuclei. Thus, the drug self‐delivery systems with drug repeat units in hydrophobic cores linked by disulfide bonds showed significant special advantages: 1) facile one‐pot synthesis; 2) completely without toxic or non‐degradable polymers; 3) DOX itself functions as fluorescent labeled molecule and self‐delivery carrier; 4) drug with inactive form in hyperbranched cores and low cytotoxicity to normal cells. These advantages make them excellent drug self‐delivery systems for potential high efficient cancer therapy.  相似文献   

18.
We report a new polymorph of (1E,4E)‐1,5‐bis(4‐fluorophenyl)penta‐1,4‐dien‐3‐one, C17H12F2O. Contrary to the precedent literature polymorph with Z′ = 3, our polymorph has one half molecule in the asymmetric unit disordered over two 50% occupancy sites. Each site corresponds to one conformation around the single bond vicinal to the carbonyl group (so‐called anti or syn). The other half of the bischalcone is generated by twofold rotation symmetry, giving rise to two half‐occupied and overlapping molecules presenting both anti and syn conformations in their open chain. Such a disorder allows for distinct patterns of intermolecular C—H…O contacts involving the carbonyl and anti‐oriented β‐C—H groups, which is reflected in three 13C NMR chemical shifts for the carbonyl C atom. Here, we have also assessed the cytotoxicity of three symmetric bischalcones through their in vitro antitumour potential against three cancer cell lines. Cytotoxicity assays revealed that this biological property increases as halogen electronegativity increases.  相似文献   

19.
Monovalent aptamers can deliver drugs to target cells by specific recognition. However, different cancer subtypes are distinguished by heterogeneous biomarkers and one single aptamer is unable to recognize all clinical samples from different patients with even the same type of cancers. To address heterogeneity among cancer subtypes for targeted drug delivery, as a model, we developed a drug carrier with a broader recognition range of cancer subtypes. This carrier, sgc8c‐sgd5a (SD), was self‐assembled from two modified monovalent aptamers. It showed bispecific recognition abilities to target cells in cell mixtures; thus broadening the recognition capabilities of its parent aptamers. The self‐assembly of SD simultaneously formed multiple drug loading sites for the anticancer drug doxorubicin (Dox). The Dox‐loaded SD (SD–Dox) also showed bispecific abilities for target cell binding and drug delivery. Most importantly, SD–Dox induced bispecific cytotoxicity in target cells in cell mixtures. Therefore, by broadening the otherwise limited recognition capabilities of monovalent aptamers, bispecific aptamer‐based drug carriers would facilitate aptamer applications for clinically heterogeneous cancer subtypes that respond to the same cancer therapy.  相似文献   

20.
A water‐soluble cationic gallium corrole, 5,10,15‐tris(N‐methyl‐4‐pyridyl)corrolatogallium(III) ( 3 ), was prepared and characterized. The photocytotoxicity of 3 was investigated using Hep G2 cancer cell line. Upon treatment with corrole 3 and irradiation, fragmentation of tumor cell nuclei was observed, which led to apoptosis. Flow cytometric analysis clearly showed the efficient induction of apoptotic cell death, and corrole 3 exhibited high photocytotoxicity towards Hep G2 cancer cells (IC50 = 60 nM). Furthermore, the binding behavior of corrole 3 with c‐MYC G‐quadruplex DNA, a potent target for antitumor drugs, was investigated using spectroscopic methods and molecular docking simulation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号