首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asymmetric catalysis with readily available, cheap, and non‐toxic alkaline earth metal catalysts represents a sustainable alternative to conventional synthesis methodologies. In this context, we describe the development of a first MgII‐catalyzed enantioselective hydroboration providing the products with excellent yields and enantioselectivities. NMR spectroscopy studies and DFT calculations provide insights into the reaction mechanism and the origin of the enantioselectivity which can be explained by a metal‐ligand cooperative catalysis pathway involving a non‐innocent ligand.  相似文献   

2.
3.
A regioselective hydroboration of alkynes has been developed by using commercially available zinc triflate as a catalyst, in the presence of catalytic amount of NaBHEt3. The reaction tolerates a wide range of terminal alkynes having several synthetically useful functional groups and proceeds regioselectively to furnish hydroborated products in moderate to excellent yields. This system shows moderate chemoselectivity towards terminal C≡C bond over terminal and internal C=C bond and internal C≡C bond.  相似文献   

4.
A cobalt‐catalyzed Z ‐selective hydrosilylation of alkynes has been developed relying on catalysts generated from bench‐stable Co(OAc)2 and pyridine‐2,6‐diimine (PDI) ligands. A variety of functionalized aromatic and aliphatic alkynes undergo this transformation, yielding Z ‐vinylsilanes in high yields with excellent selectivities (Z /E ratio ranges from 90:10 to >99:1). The addition of a catalytic amount of phenol effectively suppressed the Z /E ‐isomerization of the Z ‐vinylsilanes that formed under catalytic conditions.  相似文献   

5.
6.
A highly regio‐ and enantioselective cobalt‐catalyzed sequential hydrosilylation/hydrogenation of alkynes was developed to afford chiral silanes. This one‐pot method is operationally simple and atom economic. It makes use of relatively simple and readily available starting materials, namely alkynes, silanes, and hydrogen gas, to construct more valuable chiral silanes. Primary mechanistic studies demonstrated that highly regioselective hydrosilylation of alkynes with silanes occurred as a first step, and the subsequent cobalt‐catalyzed asymmetric hydrogenation of the resulting vinylsilanes showed good enantioselectivity.  相似文献   

7.
Reported is the anti ‐selective carbosilylation of internal alkynes with silylborane and alkyl halides using a FeBr2/DPPE catalyst system. The iron catalyst allows simultaneous introduction of a carbon electrophile and a silicon nucleophile to simple internal alkynes, including diaryl‐, dialkyl‐, and aryl/alkyl‐substituted alkynes, in a highly stereoselective manner. Alkyl halides are applicable as the electrophiles, thereby enabling the synthesis of a variety of tetrasubstituted alkenylsilanes. In addition, syn ‐selective carbosilylation was achieved through stereoswitching, by using a silylborane having oxygen functionality on the silyl group. This novel iron‐catalyzed carbosilylation is a useful tool for expedient synthesis of stereodefined multisubstituted olefins, a fundamental structural motif in organic chemistry.  相似文献   

8.
Organomagnesium complexes 2 were synthesized from N,N‐dialkylamineimine ligands 1 and dibenzylmagnesium by benzylation of the imine moiety. 3‐Aryl‐1‐propynes reacted with 2 to form the corresponding tetraalkynyl complexes, which acted as catalysts for the transformation of these terminal alkynes into allenes and further to internal alkynes under mild conditions. To the best of our knowledge, this example is the first of an organomagnesium‐catalyzed isomerization of alkynes. Notably, the reactions proceeded through temporally separated autotandem catalysis, thus allowing the isolation of the allene or internal alkyne species in good yields. Mechanistic experiments suggested that the catalytically active tetraalkynyl complexes consist of a tautomeric mixture of alkynyl‐, allenyl‐, and propargylmagnesium species.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
A silver‐catalyzed intermolecular aminosulfonylation of terminal alkynes with sodium sulfinates and TMSN3 is reported. This three‐component reaction proceeds through sequential hydroazidation of the terminal alkyne and addition of a sulfonyl radical to the resultant vinyl azide. The method enables the stereoselective synthesis of a wide range of β‐sulfonyl enamines without electron‐withdrawing groups on the nitrogen atom. These enamines are found to be suitable for a variety of further transformations.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号