首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of halogen bonds in self‐assembled networks for systems with Br and I ligands has recently been studied with scanning tunneling microscopy (STM), which provides physical insight at the atomic scale. Here, we study the supramolecular interactions of 1,5‐dichloroanthraquinone molecules on Au(111), including Cl ligands, by using STM. Two different molecular structures of chevron and square networks are observed, and their molecular models are proposed. Both molecular structures are stabilized by intermolecular Cl???H and O???H hydrogen bonds with marginal contributions from Cl‐related halogen bonds, as revealed by density functional theory calculations. Our study shows that, in contrast to Br‐ and I‐related halogen bonds, Cl‐related halogen bonds weakly contribute to the molecular structure due to a modest positive potential (σ hole) of the Cl ligands.  相似文献   

2.
MP2/aug′‐cc‐pVTZ calculations were performed to investigate boron as an electron‐pair donor in halogen‐bonded complexes (CO)2(HB):ClX and (N2)2(HB):ClX, for X=F, Cl, OH, NC, CN, CCH, CH3, and H. Equilibrium halogen‐bonded complexes with boron as the electron‐pair donor are found on all of the potential surfaces, except for (CO)2(HB):ClCH3 and (N2)2(HB):ClF. The majority of these complexes are stabilized by traditional halogen bonds, except for (CO)2(HB):ClF, (CO)2(HB):ClCl, (N2)2(HB):ClCl, and (N2)2(HB):ClOH, which are stabilized by chlorine‐shared halogen bonds. These complexes have increased binding energies and shorter B?Cl distances. Charge transfer stabilizes all complexes and occurs from the B lone pair to the σ* Cl?A orbital of ClX, in which A is the atom of X directly bonded to Cl. A second reduced charge‐transfer interaction occurs in (CO)2(HB):ClX complexes from the Cl lone pair to the π* C≡O orbitals. Equation‐of‐motion coupled cluster singles and doubles (EOM‐CCSD) spin–spin coupling constants, 1xJ(B‐Cl), across the halogen bonds are also indicative of the changing nature of this bond. 1xJ(B‐Cl) values for both series of complexes are positive at long distances, increase as the distance decreases, and then decrease as the halogen bonds change from traditional to chlorine‐shared bonds, and begin to approach the values for the covalent bonds in the corresponding ions [(CO)2(HB)?Cl]+ and [(N2)2(HB)?Cl]+. Changes in 11B chemical shieldings upon complexation correlate with changes in the charges on B.  相似文献   

3.
Two [N???I+???N] halogen‐bonded dimeric capsules using tetrakis(3‐pyridyl)ethylene cavitands with different lower rim alkyl chains are synthesized and analyzed in solution and the gas phase. These first examples of symmetrical dimeric capsules making use of the iodonium ion (I+) as the main connecting module are characterized by 1H NMR spectroscopy, diffusion ordered NMR spectroscopy (DOSY), electrospray ionization mass spectrometry (ESI‐MS), and ion mobility‐mass spectrometry (TW‐IMS) experiments. The synthesis and effective halogen‐bonded dimerization proceeds through analogous dimeric capsules with [N???Ag+???N] binding motifs as the intermediates as evidenced by the X‐ray structures of (CH2Cl2)2@[ 3 a 2?Ag4?(H2O)2?OTs4] and (CH2Cl2)2@[ 3 a 2?Ag4?(H2O)4?OTs4], two structurally different capsules.  相似文献   

4.
The halogen bonding of furan???XY and thiophene???XY (X=Cl, Br; Y=F, Cl, Br), involving σ‐ and π‐type interactions, was studied by using MP2 calculations and quantum theory of “atoms in molecules” (QTAIM) studies. The negative electrostatic potentials of furan and thiophene, as well as the most positive electrostatic potential (VS,max) on the surface of the interacting X atom determined the geometries of the complexes. Linear relationships were found between interaction energy and VS,max of the X atom, indicating that electrostatic interactions play an important role in these halogen‐bonding interactions. The halogen‐bonding interactions in furan???XY and thiophene???XY are weak, “closed‐shell” noncovalent interactions. The linear relationship of topological properties, energy properties, and the integration of interatomic surfaces versus VS,max of atom X demonstrate the importance of the positive σ hole, as reflected by the computed VS,max of atom X, in determining the topological properties of the halogen bonds.  相似文献   

5.
A series of molecular metalla[2]catenanes featuring Cp*Ir vertices have been prepared by the template‐free, coordination‐driven self‐assembly of dinuclear iridium acceptors and 1,5‐bis[2‐(4‐pyridyl)ethynyl]anthracene donors. The metalla[2]catenanes were formed by using a strategically selected linker type that is capable of participating in sandwich‐type π–π stacking interactions. In the solid state, the [2]catenanes adopt two different configurations depending on the halogen atoms at the dinuclear metal complex bridge. Altering the solvent or the concentration, as well as the addition of guest molecules, enabled controlled transformations between metalla[2]catenanes and tetranuclear metallarectangles.  相似文献   

6.
In the current study, we evaluated the solubility of a number of organometallic species and showed that it is noticeably improved in diiodomethane when compared to other haloalkane solvents. The better solvation properties of CH2I2 were associated with the substantially better σ‐hole‐donating ability of this solvent, which results in the formation of uniquely strong solvent–(metal complex) halogen bonding. The strength of the halogen bonding is attenuated by the introduction of additional halogen atoms in the organometallic species owing to the competitive formation of more favourable intermolecular complex–complex halogen bonding. The exceptional solvation properties of diiodomethane and its inertness towards organometallic species make this solvent a good candidate for NMR studies, in particular, for the acquisition of spectra of insensitive spins.  相似文献   

7.
We designed M1???C6H5X???HM2 (M1=Li+, Na+; X=Cl, Br; M2=Li, Na, BeH, MgH) complexes to enhance halogen–hydride halogen bonding with a cation–π interaction. The interaction strength has been estimated mainly in terms of the binding distance and the interaction energy. The results show that halogen–hydride halogen bonding is strengthened greatly by a cation–π interaction. The interaction energy in the triads is two to six times as much as that in the dyads. The largest interaction energy is ?8.31 kcal mol?1 for the halogen bond in the Li+???C6H5Br???HNa complex. The nature of the cation, the halogen donor, and the metal hydride influence the nature of the halogen bond. The enhancement effect of Li+ on the halogen bond is larger than that of Na+. The halogen bond in the Cl donor has a greater enhancement than that in the Br one. The metal hydride imposes its effect in the order HBeH<HMgH<HNa<HLi for the Cl complex and HBeH<HMgH<HLi<HNa for the Br complex. The large cooperative energy indicates that there is a strong interplay between the halogen–hydride halogen bonding and the cation–π interaction. Natural bond orbital and energy decomposition analyses indicate that the electrostatic interaction plays a dominate role in enhancing halogen bonding by a cation–π interaction.  相似文献   

8.
Ab initio calculations are used to provide information on H3N???XY???HF triads (X, Y=F, Cl, Br) each having a halogen bond and a hydrogen bond. The investigated triads include H3N???Br2‐HF, H3N???Cl2???HF, H3N???BrCI???HF, H3N???BrF???HF, and H3N???ClF???HF. To understand the properties of the systems better, the corresponding dyads are also investigated. Molecular geometries, binding energies, and infrared spectra of monomers, dyads, and triads are studied at the MP2 level of theory with the 6‐311++G(d,p) basis set. Because the primary aim of this study is to examine cooperative effects, particular attention is given to parameters such as cooperative energies, many‐body interaction energies, and cooperativity factors. The cooperative energy ranges from ?1.45 to ?4.64 kcal mol?1, the three‐body interaction energy from ?2.17 to ?6.71 kcal mol?1, and the cooperativity factor from 1.27 to 4.35. These results indicate significant cooperativity between the halogen and hydrogen bonds in these complexes. This cooperativity is much greater than that between hydrogen bonds. The effect of a halogen bond on a hydrogen bond is more pronounced than that of a hydrogen bond on a halogen bond.  相似文献   

9.
A study of the strong N?X????O?N+ (X=I, Br) halogen bonding interactions reports 2×27 donor×acceptor complexes of N‐halosaccharins and pyridine N‐oxides (PyNO). DFT calculations were used to investigate the X???O halogen bond (XB) interaction energies in 54 complexes. A simplified computationally fast electrostatic model was developed for predicting the X???O XBs. The XB interaction energies vary from ?47.5 to ?120.3 kJ mol?1; the strongest N?I????O?N+ XBs approaching those of 3‐center‐4‐electron [N?I?N]+ halogen‐bonded systems (ca. 160 kJ mol?1). 1H NMR association constants (KXB) determined in CDCl3 and [D6]acetone vary from 2.0×100 to >108 m ?1 and correlate well with the calculated donor×acceptor complexation enthalpies found between ?38.4 and ?77.5 kJ mol?1. In X‐ray crystal structures, the N‐iodosaccharin‐PyNO complexes manifest short interaction ratios (RXB) between 0.65–0.67 for the N?I????O?N+ halogen bond.  相似文献   

10.
The covalent nature of strong N?Br???N halogen bonds in a cocrystal ( 2 ) of N‐bromosuccinimide ( NBS ) with 3,5‐dimethylpyridine ( lut ) was determined from X‐ray charge density studies and compared to a weak N?Br???O halogen bond in pure crystalline NBS ( 1 ) and a covalent bond in bis(3‐methylpyridine)bromonium cation (in its perchlorate salt ( 3 ). In 2 , the donor N?Br bond is elongated by 0.0954 Å, while the Br???acceptor distance of 2.3194(4) is 1.08 Å shorter than the sum of the van der Waals radii. A maximum electron density of 0.38 e Å?3 along the Br???N halogen bond indicates a considerable covalent contribution to the total interaction. This value is intermediate to 0.067 e Å?3 for the Br???O contact in 1 , and approximately 0.7 e Å?3 in both N?Br bonds of the bromonium cation in 3 . A calculation of the natural bond order charges of the contact atoms, and the σ*(N1?Br) population of NBS as a function of distance between NBS and lut , have shown that charge transfer becomes significant at a Br???N distance below about 3 Å.  相似文献   

11.
The influences of the Li???π interaction of C6H6???LiOH on the H???π interaction of C6H6???HOX (X=F, Cl, Br, I) and the X???π interaction of C6H6???XOH (X=Cl, Br, I) are investigated by means of full electronic second‐order Møller–Plesset perturbation theory calculations and “quantum theory of atoms in molecules” (QTAIM) studies. The binding energies, binding distances, infrared vibrational frequencies, and electron densities at the bond critical points (BCPs) of the hydrogen bonds and halogen bonds prove that the addition of the Li???π interaction to benzene weakens the H???π and X???π interactions. The influences of the Li???π interaction on H???π interactions are greater than those on X???π interactions; the influences of the H???π interactions on the Li???π interaction are greater than X???π interactions on Li???π interaction. The greater the influence of Li???π interaction on H/X???π interactions, the greater the influences of H/X???π interactions on Li???π interaction. QTAIM studies show that the intermolecular interactions of C6H6???HOX and C6H6???XOH are mainly of the π type. The electron densities at the BCPs of hydrogen bonds and halogen bonds decrease on going from bimolecular complexes to termolecular complexes, and the π‐electron densities at the BCPs show the same pattern. Natural bond orbital analyses show that the Li???π interaction reduces electron transfer from C6H6 to HOX and XOH.  相似文献   

12.
Rhodium(III) para‐benziporphyrin alters the fundamental reactivity of the built‐in para‐phenylene moiety. Due to additional macrocyclic stabilization, a sequence of intramolecular rearrangements are triggered to afford rhodium(III) 21‐carbaporphyrin, which incorporates the rhodacyclopropane motif. The peculiar reversible transformations of the bridging methylene unit provide an example of selective and reversible aliphatic C?H bond elimination. Rhodium(III) 21‐carbaporphyrin can be oxygenated to rhodium(III) 21‐oxy‐21‐carbaporphyrin, whereas the metal ion interacts with the C(21)?O(25) fragment in an η2 fashion. This species demonstrates a remarkable axial affinity toward alkenes.  相似文献   

13.
Rotational spectra of several difluoromethane–water adducts have been observed using two broadband chirped‐pulse Fourier‐transform microwave (CP‐FTMW) spectrometers. The experimental structures of (CH2F2)???(H2O)2, (CH2F2)2???(H2O), (CH2F2)???(H2O)3, and (CH2F2)2???(H2O)2 were unambiguously identified with the aid of 18 isotopic substituted species. A subtle competition between hydrogen, halogen, and carbon bonds is observed and a detailed analysis was performed on the complex network of non‐covalent interactions which stabilize each cluster. The study shows that the combination of stabilizing contact networks is able to reinforce the interaction strength through a cooperative effect, which can lead to large stable oligomers.  相似文献   

14.
Several bis‐triazolium‐based receptors have been synthesized and their anion‐recognition capabilities have been studied. The central chiral 1,1′‐bi‐2‐naphthol (BINOL) core features either two aryl or ferrocenyl end‐capped side arms with central halogen‐ or hydrogen‐bonding triazolium receptors. NMR spectroscopic data indicate the simultaneous occurrence of several charge‐assisted aliphatic and heteroaromatic C?H noncovalent interactions and combinations of C?H hydrogen and halogen bonding. The receptors are able to selectively interact with HP2O73?, H2PO4?, and SO42? anions, and the value of the association constant follows the sequence: HP2O73?>SO42?>H2PO4?. The ferrocenyl end‐capped 72+?2 BF4 ? receptor allows recognition and differentiation of H2PO4? and HP2O73? anions by using different channels: H2PO4? is selectively detected through absorption and emission methods and HP2O73? by using electrochemical techniques. Significant structural results are the observation of an anion???anion interaction in the solid state (2:2 complex, 62+? [ H2P2O7 ] 2? ), and a short C?I???O contact is observed in the structure of the complex [ 8 2+][SO4]0.5[BF4].  相似文献   

15.
The neutral compounds [Pt(bzq)(CN)(CNR)] (R=tBu ( 1 ), Xyl ( 2 ), 2‐Np ( 3 ); bzq= benzoquinolate, Xyl=2,6‐dimethylphenyl, 2‐Np=2‐napthyl) were isolated as the pure isomers with a trans‐Cbzq,CNR configuration, as confirmed by 13C{1H} NMR spectroscopy in the isotopically marked [Pt(bzq)(13CN)(CNR)] (R=tBu ( 1′ ), Xyl ( 2′ ), 2‐Np ( 3′ )) derivatives (δ13CCN≈110 ppm; 1J(Pt,13C)≈1425 Hz]. By contrast, complex [Pt(bzq)(C≡CPh)(CNXyl)] ( 4 ) with a trans‐Nbzq,CNR configuration, has been selectively isolated from [Pt(bzq)Cl(CNXyl)] (trans‐Nbzq,CNR) using Sonogashira conditions. X‐ray diffraction studies reveal that while 1 adopts a columnar‐stacked chain structure with Pt–Pt distances of 3.371(1) Å and significant π???π interactions (3.262 Å), complex 2 forms dimers supported only by short Pt???Pt (3.370(1) Å) interactions. In complex 4 the packing is directed by weak bzq???Xyl and bzq???C≡E (C, N) interactions. In solid state at room temperature, compounds 1 and 2 both show a bright red emission (?=42.1 % 1 , 57.6 % 2 ). Luminescence properties in the solid state at 77 K and concentration‐dependent emission studies in CH2Cl2 at 298 K and at 77 K are also reported for 1 , 1·CHCl3 , 2 , 2' , 2·CHCl3 , 3 , 4 .  相似文献   

16.
By using paramagnetic [Fe(CN)6]3? anions in place of diamagnetic [Co(CN)6]3? anions, two field‐induced mononuclear single‐molecular magnets, [Nd(18‐crown‐6)(H2O)4][Co(CN)6] ? 2 H2O ( 1 ) and [Nd(18‐crown‐6)(H2O)4][Fe(CN)6] ? 2 H2O ( 2 ), have been synthesized and characterized. Single‐crystal X‐ray diffraction analysis revealed that compounds 1 and 2 were ionic complexes. The NdIII ions were located inside the cavities of the 18‐crown‐6 ligands and were each bound by four water molecules on either side of the crown ether. Magnetic investigations showed that these compounds were both field‐induced single‐molecular magnets. By comparing the slow relaxation behaviors of compounds 1 and 2 , we found significant differences between the direct and Raman processes for these two complexes, with a stronger direct process in compound 2 at low temperatures. Complete active space self‐consistent field (CASSCF) calculations were also performed on two [Nd(18‐crown‐6)(H2O)4]3+ fragments of compounds 1 and 2 . Ab initio calculations showed that the magnetic anisotropies of the NdIII centers in complexes 1 and 2 were similar to each other, which indicated that the difference in relaxation behavior was not owing to the magnetic anisotropy of NdIII. Our analysis showed that the magnetic interaction between the NdIII ion and the low‐spin FeIII ion in complex 2 played an important role in enhancing the direct process and suppressing the Raman process of the single‐molecular magnet.  相似文献   

17.
Chirality induction and amplification in a model system, that is, the 2,2,2‐trifluoroethanol (TFE)???propylene oxide (PO) adduct, were investigated using free‐space and cavity‐based Fourier transform microwave spectroscopy, complemented with high level ab initio calculations. Rotational spectra of four out of eight predicted TFE??PO adducts were assigned, and the remaining four were shown to relax to the geometries of the four observed in a jet expansion. The g+ TFE???S‐PO adduct was found to be favored over that of g? TFE???S‐PO by a factor of 2.8 at 60 K. This difference contrasts the TFE dimer for which an extreme case of chirality synchronization was previously reported. All TFE???PO conformers observed take on the open arrangement, in contrast to 2‐fluoroethanol???PO, which prefers the closed arrangement. Furthermore, perfluorination at CH3 increases the hydrogen‐bonding energy by about 70 % over its ethanol counterpart.  相似文献   

18.
A synthetic strategy for the generation of new molecular species utilizing a provision of nature is presented. Nano‐dimensional (23(2)×21(1)×16(1) Å3) hetero‐four‐layered trimetallacyclophanes were constructed by proof‐of‐concept experiments that utilize a suitable combination of π???π interactions between the central aromatic rings, tailor‐made short/long spacer tridentate donors, and the combined helicity. The behavior of the unprecedented four‐layered metallacyclophane system offers a landmark in the development of new molecular systems.  相似文献   

19.
The effect of monohydration in equatorial/axial isomerism of the common motif of tropane alkaloids is investigated in a supersonic expansion by using Fourier‐transform microwave spectroscopy. The rotational spectrum reveals the equatorial isomer as the dominant species in the tropinone???H2O complex. The monohydrated complex is stabilized primarily by a moderate O?H???N hydrogen bond. In addition, two C?H???O weak hydrogen bonds also support this structure, blocking the water molecule and avoiding any molecular dynamics in the complex. The water molecule acts as proton donor and chooses the ternary amine group over the carbonyl group as a proton acceptor. The experimental work is supported by theoretical calculations; the accuracy of the B3LYP, M06‐2X, and MP2 methods is also discussed.  相似文献   

20.
Low‐temperature (200 K) protonation of [Mo(CO)(Cp*)H(PMe3)2] ( 1 ) by Et2O ? HBF4 gives a different result depending on a subtle solvent change: The dihydrogen complex [Mo(CO)(Cp*)(η2‐H2)(PMe3)2]+ ( 2 ) is obtained in THF, whereas the tautomeric classical dihydride [Mo(CO)(Cp*)(H)2(PMe3)2]+ ( 3 ) is the only observable product in dichloromethane. Both products were fully characterised (νCO IR; 1H, 31P, 13C NMR spectroscopies) at low temperature; they lose H2 upon warming to 230 K at approximately the same rate (ca. 10?3 s?1), with no detection of the non‐classical form in CD2Cl2, to generate [Mo(CO)(Cp*)(FBF3)(PMe3)2] ( 4 ). The latter also slowly decomposes at ambient temperature. One of the decomposition products was crystallised and identified by X‐ray crystallography as [Mo(CO)(Cp*)(FH???FBF3)(PMe3)2] ( 5 ), which features a neutral HF ligand coordinated to the transition metal through the F atom and to the BF4? anion through a hydrogen bond. The reason for the switch in relative stability between 2 and 3 was probed by DFT calculations based on the B3LYP and M05‐2X functionals, with inclusion of anion and solvent effects by the conductor‐like polarisable continuum model and by explicit consideration of the solvent molecules. Calculations at the MP4(SDQ) and CCSD(T) levels were also carried out for calibration. The calculations reveal the key role of non‐covalent anion–solvent interactions, which modulate the anion–cation interaction ultimately altering the energetic balance between the two isomeric forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号