首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inducing uniform deposition of lithium from the stage of metal crystallization nucleation is of vital importance to achieve dendrite‐free lithium anodes. Herein, using experiments and simulation, homogenization of Li nucleation and normalization of Li growth can be achieved on PNIPAM polymer brushes with lithiophilic functional groups modified Cu substrates. The lithiophilic functional groups of amide O can homogenize ion mass transfer and induce the uniform distribution of Li nucleation sites. What is more, the ultra‐small space between each brush can act as the channels for Li transportation and normalization growth. Owing to the synergistic effect of homogenization and normalization of electrodeposited Li, the obtained planar columnar Li anode exhibits excellent cycle stability at an ultra‐high current density of 20 mA cm?2.  相似文献   

2.
随着电动汽车和便携式电子产品的快速发展, 人们对于高比能二次电池的需求越来越迫切. 锂金属以其极高的理论比容量和极低的电极电势被视为下一代高比能电池理想负极材料之一. 但是, 锂枝晶的生长及体积膨胀等问题限制了金属锂负极的实际应用. 在金属锂负极中引入三维骨架可以有效抑制锂枝晶生长, 缓解体积膨胀. 其中亲锂骨架可以降低锂的形核能垒, 诱导锂的均匀成核, 更加有效地调控锂沉积行为. 本文结合国内外的研究进展总结了锂金属负极中亲锂骨架的研究成果. 根据亲锂材料的不同对亲锂骨架进行了分类, 总结了各类亲锂骨架在调控锂沉积行为和提高电池性能方面取得的成果, 并对其今后的研究和发展进行了展望.  相似文献   

3.
将轻质、三维多孔且亲锂的泡沫铝用作锂(Li)金属负极骨架,通过简单的机械挤压方法,将泡沫铝与金属Li复合,制得Al@Li复合负极。泡沫铝自身的高亲锂性,能够为Li金属成核提供丰富且均匀的活性位点,诱导Li在泡沫铝内部的快速成核和均匀电沉积。同时,泡沫铝的三维多孔结构,可以容纳Li金属负极在充放电过程中的巨大体积应变,降低局部电流密度,从而有效抑制Li枝晶的生长。因此,与纯Li金属负极相比,所获得的Al@Li复合负极在对称电池和LiFePO4||Al@Li半电池中,均表现出了更加优异的循环稳定性。  相似文献   

4.
将轻质、三维多孔且亲锂的泡沫铝用作锂(Li)金属负极骨架,通过简单的机械挤压方法,将泡沫铝与金属 Li复合,制得Al@Li复合负极。泡沫铝自身的高亲锂性,能够为Li金属成核提供丰富且均匀的活性位点,诱导Li在泡沫铝内部的快速成核和均匀电沉积。同时,泡沫铝的三维多孔结构,可以容纳Li金属负极在充放电过程中的巨大体积应变,降低局部电流密度,从而有效抑制Li枝晶的生长。因此,与纯Li金属负极相比,所获得的Al@Li复合负极在对称电池和LiFePO4||Al@Li半电池中,均表现出了更加优异的循环稳定性。  相似文献   

5.
Lithium metal anodes suffer from poor cycling stability and potential safety hazards. To alleviate these problems, Li thin‐film anodes prepared on current collectors (CCs) and Li‐free types of anodes that involve direct Li plating on CCs have received increasing attention. In this study, the atomic‐scale design of Cu‐CC surface lithiophilicity based on surface lattice matching of the bcc Li(110) and fcc Cu(100) faces as well as electrochemical achievement of Cu(100)‐preferred surfaces for smooth Li deposition with a low nucleation barrier is reported. Additionally, a purposely designed solid–electrolyte interphase is created for Li anodes prepared on CCs. Not only is a smooth planar Li thin film prepared, but a uniform Li plating/stripping on the skeleton of 3D CCs is achieved as well by high utilization of the surface and cavities of the 3D CCs. This work demonstrates surface electrochemistry approaches to construct stable Li metal–electrolyte interphases towards practical applications of Li anodes prepared on CCs.  相似文献   

6.
Lithium metal anodes (LMAs) with high energy density have recently captured increasing attention for development of next-generation batteries. However, practical viability of LMAs is hindered by the uncontrolled Li dendrite growth and infinite dimension change. Even though constructing 3D conductive skeleton has been regarded as a reliable strategy to prepare stable and low volume stress LMAs, engineering the renewable and lithiophilic conductive scaffold is still a challenge. Herein, a robust conductive scaffold derived from renewable cellulose paper, which is coated with reduced graphene oxide and decorated with lithiophilic Au nanoparticles, is engineered for LMAs. The graphene cellulose fibres with high surface area can reduce the local current density, while the well-dispersed Au nanoparticles can serve as lithiophilic nanoseeds to lower the nucleation overpotential of Li plating. The coupled relationship can guarantee uniform Li nucleation and unique spherical Li growth into 3D carbon matrix. Moreover, the natural cellulose paper possesses outstanding mechanical strength to tolerate the volume stress. In virtue of the modulated deposition behaviour and near-zero volume change, the hybrid LMAs can achieve reversible Li plating/stripping even at an ultrahigh current density of 10 mA cm−2 as evidenced by high Coulombic efficiency (97.2 % after 60 cycles) and ultralong lifespan (1000 cycles) together with ultralow overpotential (25 mV). Therefore, this strategy sheds light on a scalable approach to multiscale design versatile Li host, promising highly stable Li metal batteries to be feasible and practical.  相似文献   

7.
Constructing a solid electrolyte interface (SEI) is a highly effective approach to overcome the poor reversibility of lithium (Li) metal anodes. Herein, an adhesive and self‐healable supramolecular copolymer, comprising of pendant poly(ethylene oxide) (PEO) segments and ureido‐pyrimidinone (UPy) quadruple‐hydrogen‐bonding moieties, is developed as a protection layer of Li anode by a simple drop‐coating. The protection performance of in‐situ‐formed LiPEO–UPy SEI layer is significantly enhanced owing to the strong binding and improved stability arising from a spontaneous reaction between UPy groups and Li metal. An ultrathin (approximately 70 nm) LiPEO–UPy layer can contribute to stable and dendrite‐free cycling at a high areal capacity of 10 mAh cm?2 at 5 mA cm?2 for 1000 h. This coating together with the promising electrochemical performance offers a new strategy for the development of dendrite‐free metal anodes.  相似文献   

8.
It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high‐energy‐density Li‐metal based batteries. Herein, we explored the temperature‐dependent Li nucleation and growth behavior and constructed a dendrite‐free Li metal anode by elevating temperature from room temperature (20 °C) to 60 °C. A series of ex situ and in situ microscopy investigations demonstrate that increasing Li deposition temperature results in large nuclei size, low nucleation density, and compact growth of Li metal. We reveal that the enhanced lithiophilicity and the increased Li‐ion diffusion coefficient in aprotic electrolytes at high temperature are essential factors contributing to the dendrite‐free Li growth behavior. As anodes in both half cells and full cells, the compact deposited Li with minimized specific surface area delivered high Coulombic efficiencies and long cycling stability at 60 °C.  相似文献   

9.
Lithium (Li) metal is the most promising electrode for next‐generation rechargeable batteries. However, the challenges induced by Li dendrites on a working Li metal anode hinder the practical applications of Li metal batteries. Herein, nitrogen (N) doped graphene was adopted as the Li plating matrix to regulate Li metal nucleation and suppress dendrite growth. The N‐containing functional groups, such as pyridinic and pyrrolic nitrogen in the N‐doped graphene, are lithiophilic, which guide the metallic Li nucleation causing the metal to distribute uniformly on the anode surface. As a result, the N‐doped graphene modified Li metal anode exhibits a dendrite‐free morphology during repeated Li plating and demonstrates a high Coulombic efficiency of 98 % for near 200 cycles.  相似文献   

10.
The rechargeable lithium metal anode is of utmost importance for high‐energy‐density batteries. Regulating the deposition/dissolution characteristics of Li metal is critical in both fundamental researches and practical applications. In contrast to gray Li deposits featured with dendritic and mossy morphologies, columnar and uniform Li is herein plated on lithium‐fluoride (LiF)‐protected copper (Cu) current collectors. The electrochemical properties strongly depended on the microscale morphologies of deposited Li, which were further embodied as macroscale colors. The as‐obtained ultrathin and columnar Li anodes contributed to stable cycling in working batteries with a dendrite‐free feature. This work deepens the fundamental understanding of the role of LiF in the nucleation/growth of Li and provides emerging approaches to stabilize rechargeable Li metal anodes.  相似文献   

11.
The rechargeable lithium metal anode is of utmost importance for high‐energy‐density batteries. Regulating the deposition/dissolution characteristics of Li metal is critical in both fundamental researches and practical applications. In contrast to gray Li deposits featured with dendritic and mossy morphologies, columnar and uniform Li is herein plated on lithium‐fluoride (LiF)‐protected copper (Cu) current collectors. The electrochemical properties strongly depended on the microscale morphologies of deposited Li, which were further embodied as macroscale colors. The as‐obtained ultrathin and columnar Li anodes contributed to stable cycling in working batteries with a dendrite‐free feature. This work deepens the fundamental understanding of the role of LiF in the nucleation/growth of Li and provides emerging approaches to stabilize rechargeable Li metal anodes.  相似文献   

12.
Guiding the lithium ion (Li‐ion) transport for homogeneous, dispersive distribution is crucial for dendrite‐free Li anodes with high current density and long‐term cyclability, but remains challenging for the unavailable well‐designed nanostructures. Herein, we propose a two‐dimensional (2D) heterostructure composed of defective graphene oxide (GO) clipped on mesoporous polypyrrole (mPPy) as a dual‐functional Li‐ion redistributor to regulate the stepwise Li‐ion distribution and Li deposition for extremely stable, dendrite‐free Li anodes. Owing to the synergy between the Li‐ion transport nanochannels of mPPy and the Li‐ion nanosieves of defective GO, the 2D mPPy‐GO heterostructure achieves ultralong cycling stability (1000 cycles), even tests at 0 and 50 °C, and an ultralow overpotential of 70 mV at a high current density of 10.0 mA cm?2, outperforming most reported Li anodes. Furthermore, mPPy‐GO‐Li/LiCoO2 full batteries demonstrate remarkably enhanced performance with a capacity retention of >90 % after 450 cycles. Therefore, this work opens many opportunities for creating 2D heterostructures for high‐energy‐density Li metal batteries.  相似文献   

13.
Lithium metal anodes involve solid-electrolyte interphase (SEI) and various SEI-coupled interfaces, where Li deposition/dissolution and related processes take place. Important tasks of fundamental researches are to rationally designing and creating stable SEI and related interfaces based on in-depth understanding of the formation processes and the resultant interfacial/interphase structures. These issues fall into the category of and can be studied by taking the advantages of surface electrochemistry. In this review, we summarize recent advances in constructing SEI and lithiophilic interfaces via surface electrochemistry approaches as well as atomic force microscopic characterizations of morphology and nanomechanics for achieving long-term stability of Li anodes. Further fundamental research directions on Li metal anodes are also briefly discussed.  相似文献   

14.
Two‐dimensional (2D) nanomaterials show unique electrical, mechanical, and catalytic performance owing to their ultrahigh surface‐to‐volume ratio and quantum confinement effects. However, ways to simply synthesize 2D metal oxide nanosheets through a general and facile method is still a big challenge. Herein, we report a generalized and facile strategy to synthesize large‐size ultrathin 2D metal oxide nanosheets by using graphene oxide (GO) as a template in a wet‐chemical system. Notably, the novel strategy mainly relies on accurately controlling the balance between heterogeneous growth and nucleation of metal oxides on the surface of GO, which is independent on the individual character of the metal elements. Therefore, ultrathin nanosheets of various metal oxides, including those from both main‐group and transition elements, can be synthesized with large size. The ultrathin 2D metal oxide nanosheets also show controllable thickness and unique surface chemical state.  相似文献   

15.
Although graphene nanomesh is an attractive 2D carbon material, general synthetic routes to produce functional graphene nanomesh in large‐scale are complex and tedious. Herein, we elaborately design a simple two‐step dimensional reduction strategy for exploring nitrogen‐doped graphene nanomesh by thermal exfoliation of crystal‐ and shape‐modified metal‐organic frameworks (MOFs). MOF nanoleaves with 2D rather than 3D crystal structure are used as the precursor, which are further thermally unraveled into nitrogen‐doped graphene nanomesh by using metal chlorides as the exfoliators and etching agent. The nitrogen‐doped graphene nanomesh has a unique ultrathin two‐dimensional morphology, high porosity, rich and accessible nitrogen‐doped active sites, and defective graphene edges, contributing to an unprecedented catalytic activity for the oxygen reduction reaction (ORR) in acid electrolytes. This approach is suitable for scalable production.  相似文献   

16.
Metal–organic framework (MOFs) two‐dimensional (2D) nanosheets have many coordinatively unsaturated metal sites that act as active centres for catalysis. To date, limited numbers of 2D MOFs nanosheets can be obtained through top‐down or bottom‐up synthesis strategies. Herein, we report a 2D oxide sacrifice approach (2dOSA) to facilely synthesize ultrathin MOF‐74 and BTC MOF nanosheets with a flexible combination of metal sites, which cannot be obtained through the delamination of their bulk counterparts (top‐down) or the conventional solvothermal method (bottom‐up). The ultrathin iron–cobalt MOF‐74 nanosheets prepared are only 2.6 nm thick. The sample enriched with surface coordinatively unsaturated metal sites, exhibits a significantly higher oxygen evolution reaction reactivity than bulk FeCo MOF‐74 particles and the state‐of‐the‐art MOF catalyst. It is believed that this 2dOSA could provide a new and simple way to synthesize various ultrathin MOF nanosheets for wide applications.  相似文献   

17.
Despite efforts to stabilize sodium metal anodes and prevent dendrite formation, achieving long cycle life with high areal capacities remains difficult owing to a combination of complex failure modes that involve retardant uneven sodium nucleation and subsequent dendrite formation. Now, a sodiophilic interphase based on oxygen‐functionalized carbon nanotube networks is presented, which concurrently facilitates a homogeneous sodium nucleation and a dendrite‐free, lateral growth behavior upon recurring sodium plating/stripping processes. This sodiophilic interphase renders sodium anodes with an ultrahigh capacity of 1078 mAh g?1 (areal capacity of 10 mAh cm?2), approaching the theoretical capacity of 1166 mAh g?1 of pure sodium, as well as a long cycle life up to 3000 cycles. Implementation of this anode allows for the construction of a sodium–air battery with largely enhanced cycling performance owing to the oxygen functionalization‐mediated, dendrite‐free sodium morphology.  相似文献   

18.
Despite efforts to stabilize sodium metal anodes and prevent dendrite formation, achieving long cycle life with high areal capacities remains difficult owing to a combination of complex failure modes that involve retardant uneven sodium nucleation and subsequent dendrite formation. Now, a sodiophilic interphase based on oxygen‐functionalized carbon nanotube networks is presented, which concurrently facilitates a homogeneous sodium nucleation and a dendrite‐free, lateral growth behavior upon recurring sodium plating/stripping processes. This sodiophilic interphase renders sodium anodes with an ultrahigh capacity of 1078 mAh g?1 (areal capacity of 10 mAh cm?2), approaching the theoretical capacity of 1166 mAh g?1 of pure sodium, as well as a long cycle life up to 3000 cycles. Implementation of this anode allows for the construction of a sodium–air battery with largely enhanced cycling performance owing to the oxygen functionalization‐mediated, dendrite‐free sodium morphology.  相似文献   

19.
Prelithiation is of great interest to Li‐ion battery manufacturers as a strategy for compensating for the loss of active Li during initial cycling of a battery, which would otherwise degrade its available energy density. Solution‐based chemical prelithiation using a reductive chemical promises unparalleled reaction homogeneity and simplicity. However, the chemicals applied so far cannot dope active Li in Si‐based high‐capacity anodes but merely form solid–electrolyte interphases, leading to only partial mitigation of the cycle irreversibility. Herein, we show that a molecularly engineered Li–arene complex with a sufficiently low redox potential drives active Li accommodation in Si‐based anodes to provide an ideal Li content in a full cell. Fine control over the prelithiation degree and spatial uniformity of active Li throughout the electrodes are achieved by managing time and temperature during immersion, promising both fidelity and low cost of the process for large‐scale integration.  相似文献   

20.
The use of Li metal as the anode for Li-based batteries has attracted considerable attention due to its ultrahigh energy density. However, the formation of Li dendrites, uneven deposition, and huge volume changes hinder its reliable implementation. These issues become much more severe in commercial carbonate-based electrolytes than in ether-based electrolytes. Herein, a rationally designed three-dimensional graphene/Ag aerogel (3D G-Ag aerogel) is proposed for Li metal anodes with long cycle life in carbonate-based electrolytes. The modified lithiophilic nature of G-Ag aerogel, realized through decoration with Ag NPs, effectively decreases the energy barrier for Li nucleation, regulating uniform Li deposition behavior. Moreover, the highly flexible, conductive 3D porous architecture with hierarchical mesopores and macropores can readily accommodate deposited Li and ensures the integrity of the conductive network during cycling. Consequently, high coulombic efficiency (over 93.5 %) and a significantly long cycle life (1589 h) over 200 cycles, with a relatively high cycling capacity of 2.0 mAh cm−2, can easily be achieved, even in a carbonate-based electrolyte. Considering the intrinsic high voltage windows of carbonate-based electrolytes, matching the G-Ag aerogel Li metal anode with a high-voltage cathode can be envisaged for the fabrication of high-energy-density Li secondary batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号