首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
A protocol for complete and nondestructive atomic Bell‐state analysis by using inverse engineering is presented. The setups for the Bell‐state analysis contain four atoms trapped in four separated cavities, respectively. The laser pulses designed by inverse engineering help in the manipulation of the transitions of atoms in a robust manner. By using the protocol, the information for distinguishing four Bell states of two information‐carrying atoms is encoded on two auxiliary atoms. Therefore, the four Bell states can be distinguished without being destroyed by detecting the states of the two auxiliary atoms. Moreover, as shown by the numerical simulations, the protocol has high successful probabilities to distinguish four Bell states when decoherence is considered. Thus, the protocol may provide some helpful perspectives for the quantum information tasks based on Bell states.  相似文献   

2.
Here, a protocol for robust preparation of an atomic concatenated Greenberger–Horne–Zeilinger (C‐GHZ) state via shortcuts to adiabaticity (STA) is proposed. The devices for implementing the protocol consist of atoms, cavities, and the optical fibers, which are feasible with current technology. The atoms are trapped in the separated cavities allowing individual control over each atom with classical fields. STA helps to design Rabi frequencies of classical fields so that the atoms can be driven from the initial states to the target states. The numerical simulations show that the protocol holds robustness against atomic spontaneous emissions and photonic leakages. Thus, the protocol may be realized by experiments in the near future.  相似文献   

3.
Quantum information processing requires information or entanglement that can be transferred or distributed from one location to another with high fidelity. Here, a scheme for faithful quantum state transfer and entanglement generation based on the hybrid opto‐electro‐mechanical (OEM) systems in a fast and deterministic way is proposed. By applying invariant‐based inverse engineering to the interaction Hamiltonian, the couplings in the OEM system can be controlled by asynchronized driving fields, which is convenient to be realized in practice. Taking the systematic decoherence into consideration, the numerical simulation shows that the scheme can be implemented with less time and high fidelity. Therefore, the scheme provides a promising way for robust on‐chip converting of low‐frequency electrical signal into much higher‐frequency optical signal, and thus enabling large‐scale quantum information networks to grow in size and complexity.  相似文献   

4.
Since the quality factor of an acoustic wave resonator (AWR) reached 1011, AWRs have been regarded as a good carrier of quantum information. In this paper, a scheme to construct a NOON state with two AWRs assisted by a nitrogen‐vacancy‐center ensemble (NVE) is proposed. The two AWRs cross each other vertically, and the NVE is located at the center of the crossing. By considering the decoherence of the system and using resonant interactions between the AWRs and the NVE, and the single‐qubit operation of the NVE, a NOON state can be achieved with a fidelity higher than 98.8% when the number of phonons in the AWR is N 3 .  相似文献   

5.
We present a remote three-party quantum state sharing (QSTS) schemewith three-atom Greenberger-Horne-Zeilinger (GHZ) states assisted bycavity QED and flying qubits. It exploits some photons to act as the flying qubits for setting up the quantum channel securely with three-atom systems in a GHZ state, which maybe make this remote QSTS scheme more practical than some other schemes based on atom systems only or ion-trap systems as photons interact with their environments weakly. The coherence of the stationary atom qubits in cavities provides the convenience for the parties in QSTS to check eavesdropping, different from entangled photon systems. Moreover, the present scheme works in a collective-noise condition and it may be more practical than others in applications in future.  相似文献   

6.
Nonclassical properties of photon added and subtracted displaced Fock states are studied using various witnesses of lower‐ and higher‐order nonclassicality. Compact analytic expressions are obtained for the nonclassicality witnesses. Using those expressions, it is established that these states and the states that can be obtained as their limiting cases (except coherent states) are highly nonclassical as they show the existence of lower‐ and higher‐order antibunching and sub‐Poissonian photon statistics, in addition to the nonclassical features revealed through the Mandel Q M parameter, zeros of Q function, Klyshko's criterion, and Agarwal–Tara criterion. Further, some comparison between the nonclassicality of photon added and subtracted displaced Fock states have been performed using witnesses of nonclassicality. This has established that between the two types of non‐Gaussianity inducing operations (i.e., photon addition and subtraction) used here, photon addition influences the nonclassical properties more strongly. Further, optical designs for the generation of photon added and subtracted displaced Fock states from squeezed vacuum state have also been proposed.  相似文献   

7.
We review the basic light‐matter interactions and optical properties of chip‐based single photon sources, that are enabled by integrating single quantum dots with planar photonic crystals. A theoretical framework is presented that allows one to connect to a wide range of quantum light propagation effects in a physically intuitive and straightforward way. We focus on the important mechanisms of enhanced spontaneous emission, and efficient photon extraction, using all‐integrated photonic crystal components including waveguides, cavities, quantum dots and output couplers. The limitations, challenges, and exciting prospects of developing on‐chip quantum light sources using integrated photonic crystal structures are discussed.  相似文献   

8.
The novel pyridyl‐substituted coumarin ( 1 ) and its perchlorate salt ( 2 ) have been synthesized and their structure and properties elucidated in detail spectroscopically, thermally and structurally, using single crystal X‐ray diffraction for 2 , linear‐polarized solid state IR‐spectroscopy, UV‐spectroscopy, TGA, DSC, DTA, and positive and negative ESI MS. Quantum chemical calculations were used to obtain the electronic structure, vibrational data and electronic spectra. The studied compound crystallizes in the centrosymmetric space group P‐1 and exhibits an infinite layered structure with the ions linked by means of the intermolecular N+H…OClO3 (2.795 Å) interactions. The cations are disposed in a manner leading to a significant π‐stacking effect with a distance of 2.980 Å. The effects of Npy protonation on the optical and magnetic properties are elucidated by comparing the data of the protonated and neutral compounds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, multivariate data analysis methods were applied to the analysis and interpretation of micro‐Raman spectra, collected from a broad set of historical iron‐based ink samples, previously characterised for the content of organic acids (gallic acid, ellagic acid and protocatechuic acid). The proposed method relies on principal component analysis of the noisy spectra typically obtained on original, degraded, organic samples, where fluorescence could affect the Raman signal. The signal components could be distinguished from the noise components and then used to build a linear discriminant analysis (LDA) model, achieving separation of the spectra into three classes. Selection of pure signal factors also improved effectiveness and performances of partial least square regression (PLS) algorithms, allowing quantification of condensed tannic acid residuals. Application of multivariate methods to discriminate signal from noise removes the need for spectral data manipulation (filtering, smoothing and differentiating). The obtained classification method for discrimination of historic inks and the regression method for determination of condensed tannic acid residuals supports the use of Raman analysis of fluorescing organic materials, and may provide information to scholars on ink composition and potentially on its provenance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A simple method is proposed to improve the depth resolution of a conventional X‐ray confocal microscopy system by adding a thin wire close to the sample surface and upstream of the polycapillary in the exit channel. A depth resolution of around 10 μm is easily obtained. The detection efficiency is improved by a factor of two to three times, compared with the thin wire technique previously proposed. It is also shown that not only the elemental distribution but also the X‐ray absorption near‐edge structure (XANES) spectrum from locations below the sample surface can be obtained. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
The modifications to the vibrational spectra produced by inclusion into cyclodextrins on the vibrational spectra of of the non‐steroidal anti–inflammatory drug ibuprofen, by inclusion into cyclodextrins have been investigated by means of Raman scattering and numerical simulation. These changes are discussed and explained by comparison with the theoretical vibrational wavenumbersfrequencies and Raman intensities obtained by quantum and classical numerical simulations, disentangling the effects directly related to the complexation process, from those to be ascribed to non‐covalent dimerization of ibuprofen due to hydrogen bonding. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Measurement and interpretation of the excitation wavelength dependence of surface‐enhanced Raman scattering (SERS) spectra of molecules chemisorbed on plasmonic, e.g. Ag nanoparticle (NP) surfaces, are of principal importance for revealing the charge transfer (CT) mechanism contribution to the overall SERS enhancement. SERS spectra, their excitation wavelength dependence in the 445–780‐nm range and factor analysis (FA) were used for the identification of two Ag‐2,2′:6′,2″‐terpyridine (tpy) surface species, denoted Ag+–tpy and Ag(0)–tpy, on Ag NPs in systems with unmodified and/or purposefully modified Ag NPs originating from hydroxylamine hydrochloride‐reduced hydrosols. Ag+–tpy is a spectral analogue of [Ag(tpy)]+ complex cation, and its SERS shows virtually no excitation wavelength dependence. By contrast, SERS of Ag(0)–tpy surface complex generated upon chloride‐induced compact aggregate formation and/or in strongly reducing ambient shows a pronounced excitation wavelength dependence attributed to a CT resonance (the chemical mechanism) contribution to the overall SERS enhancement. Both the resonance (λexc = 532 nm) and off‐resonance (λexc = 780 nm) pure‐component spectra of Ag(0)–tpy obtained by FA are largely similar to surface‐enhanced resonance Raman scattering (λexc = 532 nm in resonance with singlet metal to ligand CT (1 MLCT) transition) and SERS (λexc = 780 nm) spectra of [Fe(tpy)2]2+ complex dication. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号