首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular dynamics and MM_GBSA energy calculations on various zinc finger proteins containing three and four fingers bound to their target DNA gave insights into the role of each finger in the DNA binding process as part of the protein structure. The wild type Zif 268 (PDB code: 1AAY) gave a ΔG value of ??76.1 (14) kcal/mol. Zinc fingers ZF1, ZF2 and ZF3 were mutated in one experiment and in another experiment one finger was cut and the rest of the protein was studied for binding. The ΔΔG values for the Zinc Finger protein with both ZF1 and ZF2 mutated was +?80 kcal/mol, while mutating only ZF1 the ΔΔG value was +?52 kcal/mol (relative to the wild type). Cutting ZF3 and studying the protein consisting only of ZF1 linked to ZF2 gave a ΔΔG value of +?68 kcal/mol. Upon cutting ZF1, the resulting ZF2 linked to ZF3 protein gave a ΔΔG value of +?41 kcal/mol. The above results shed light on the importance of each finger in the binding process, especially the role of ZF1 as the anchoring finger followed in importance by ZF2 and ZF3. The energy difference between the binding of the wild type protein Zif268 (1AAY) and that for individual finger binding to DNA according to the formula: ΔΔGlinkers, otherstructuralfactors?=?ΔGzif268???(ΔGF1+F2+F3) gave a value?=???44.5 kcal/mol. This stabilization can be attributed to the contribution of linkers and other structural factors in the intact protein in the DNA binding process. DNA binding energies of variant proteins of the wild type Zif268 which differ in their ZF1 amino acid sequence gave evidence of a good relationship between binding energy and recognition and specificity, this finding confirms the reported vital role of ZF1 in the ZF protein scanning and anchoring to the target DNA sequence. The role of hydrogen bonds in both specific and nonspecific amino acid-DNA contacts is discussed in relation to mutations. The binding energies of variant Zinc Finger proteins confirmed the role of ZF1 in the recognition, specificity and anchoring of the zinc finger protein to DNA.  相似文献   

2.
The design and characterization of a hydrophobic cavity in de novo designed proteins provides a wide range of information about the functions of de novo proteins. We designed a de novo tetrameric coiled‐coil protein with a hydrophobic pocketlike cavity. Tetrameric coiled coils with hydrophobic cavities have previously been reported. By replacing one Leu residue at the a position with Ala, hydrophobic cavities that did not flatten out due to loose peptide chains were reliably created. To perform a detailed examination of the ligand‐binding characteristics of the cavities, we originally designed two other coiled‐coil proteins: AM2, with eight Ala substitutions at the adjacent a and d positions at the center of a bundled structure, and AM2W, with one Trp and seven Ala substitutions at the same positions. To increase the association of the helical peptides, each helical peptide was connected with flexible linkers, which resulted in a single peptide chain. These proteins exhibited CD spectra corresponding to superhelical structures, despite weakened hydrophobic packing. AM2W exhibited binding affinity for size‐complementary organic compounds. The dissociation constants, Kd, of AM2W were 220 nM for adamantane, 81 μM for 1‐adamantanol, and 294 μM for 1‐adamantaneacetic acid, as measured by fluorescence titration analyses. Although it was contrary to expectations, AM2 did not exhibit any binding affinity, probably due to structural defects around the designed hydrophobic cavity. Interestingly, AM2W exhibited incremental structure stability through ligand binding. Plugging of structural defects with organic ligands would be expected to facilitate protein folding.  相似文献   

3.
Covalent side‐chain cross‐links are a versatile method to control peptide folding, particularly when α‐helical secondary structure is the target. Here, we examine the application of oxime bridges, formed by the chemoselective reaction between aminooxy and aldehyde side chains, for the stabilization of a helical peptide involved in a protein–protein complex. A series of sequence variants of the dimeric coiled coil GCN4‐p1 bearing oxime bridges at solvent‐exposed positions were prepared and biophysically characterized. Triggered unmasking of a side‐chain aldehyde in situ and subsequent cyclization proceed rapidly and cleanly at pH 7 in the folded protein complex. Comparison of folding thermodynamics among a series of different oxime bridges show that the cross links are consistently stabilizing to the coiled coil, with the extent of stabilization sensitive to the exact size and structure of the macrocycle. X‐ray crystallographic analysis of a coiled coil with the best cross link in place and a second structure of its linear precursor show how the bridge is accommodated into an α‐helix. Preparation of a bicyclic oligomer by simultaneous formation of two linkages in situ demonstrates the potential use of triggered oxime formation to both trap and stabilize a particular peptide folded conformation in the bound state.  相似文献   

4.
H2S is a gaseous signaling molecule that modifies cysteine residues in proteins to form persulfides (P‐SSH). One family of proteins modified by H2S are zinc finger (ZF) proteins, which contain multiple zinc‐coordinating cysteine residues. Herein, we report the reactivity of H2S with a ZF protein called tristetraprolin (TTP). Rapid persulfidation leading to complete thiol oxidation of TTP mediated by H2S was observed by low‐temperature ESI‐MS and fluorescence spectroscopy. Persulfidation of TTP required O2 , which reacts with H2S to form superoxide, as detected by ESI‐MS, a hydroethidine fluorescence assay, and EPR spin trapping. H2S was observed to inhibit TTP function (binding to TNFα mRNA) by an in vitro fluorescence anisotropy assay and to modulate TNFα in vivo. H2S was unreactive towards TTP when the protein was bound to RNA, thus suggesting a protective effect of RNA.  相似文献   

5.
BACKGROUND: The alpha-helical coiled coil structures formed by 25-50 residues long peptides are recognized as one of Nature's favorite ways of creating an oligomerization motif. Known de novo designed and natural coiled coils use the lateral dimension for oligomerization but not the axial one. Previous attempts to design alpha-helical peptides with a potential for axial growth led to fibrous aggregates which have an unexpectedly big and irregular thickness. These facts encouraged us to design a coiled coil peptide which self-assembles into soluble oligomers with a fixed lateral dimension and whose alpha-helices associate in a staggered manner and trigger axial growth of the coiled coil. Designing the coiled coil with a large number of subunits, we also pursue the practical goal of obtaining a valuable scaffold for the construction of multivalent fusion proteins. RESULTS: The designed 34-residue peptide self-assembles into long fibrils at slightly acid pH and into spherical aggregates at neutral pH. The fibrillogenesis is completely reversible upon pH change. The fibrils were characterized using circular dichroism spectroscopy, sedimentation diffusion, electron microscopy, differential scanning calorimetry and X-ray fiber diffraction. The peptide was deliberately engineered to adopt the structure of a five-stranded coiled coil rope with adjacent alpha-helices, staggered along the fibril axis. As shown experimentally, the most likely structure matches the predicted five-stranded arrangement. CONCLUSIONS: The fact that the peptide assembles in an expected fibril arrangement demonstrates the credibility of our conception of design. The discovery of a short peptide with fibril-forming ability and stimulus-sensitive behavior opens new opportunities for a number of applications.  相似文献   

6.
7.
Multivalent ligands of death receptors hold particular promise as tumor cell‐specific therapeutic agents because they induce an apoptotic cascade in cancerous cells. Herein, we present a modular approach to generate death receptor 5 (DR5) binding constructs comprising multiple copies of DR5 targeting peptide (DR5TP) covalently bound to biomolecular scaffolds of peptidic nature. This strategy allows for efficient oligomerization of synthetic DR5TP‐derived peptides in different spatial orientations using a set of enzyme‐promoted conjugations or recombinant production. Heptameric constructs based on a short (60–75 residues) scaffold of a C‐terminal oligomerization domain of human C4b binding protein showed remarkable proapoptotic activity (EC50=3 nm ) when DR5TP was ligated to its carboxy terminus. Our data support the notion that inter‐ligand distance, relative spatial orientation and copy number of receptor‐binding modules are key prerequisites for receptor activation and cell killing.  相似文献   

8.
From DNA base pairs to drug–receptor binding, hydrogen (H‐)bonding and aromaticity are common features of heterocycles. Herein, the interplay of these bonding aspects is explored. H‐bond strength modulation due to enhancement or disruption of aromaticity of heterocycles is experimentally revealed by comparing homodimer H‐bond energies of aromatic heterocycles with analogs that have the same H‐bonding moieties but lack cyclic π‐conjugation. NMR studies of dimerization in C6D6 find aromaticity‐modulated H‐bonding (AMHB) energy effects of approximately ±30 %, depending on whether they enhance or weaken aromatic delocalization. The attendant ring current perturbations expected from such modulation are confirmed by chemical shift changes in both observed ring C−H and calculated nucleus‐independent sites. In silico modeling confirms that AMHB effects outweigh those of hybridization or dipole–dipole interaction.  相似文献   

9.
The pleckstrin homology (PH) domain forms a structurally conserved protein module of approximately 120 amino acid residues. Several proteins involved in cellular signaling and cytoskeletal organization possess split PH domains while their biological roles and ligand binding activity remain to be clarified. We have designed a split PH domain from a structurally well-characterized PH domain of phospholipase Cdelta(1) by dissecting the PH domain and tethering a coiled coil module to each subunit to ask a question of whether the coiled coil could mediate a functional reassembly of the split PH domain. Isothermal titration microcalorimetry measurements indicated a formation of a thermodynamically stable 1:1 complex of the N-terminal and C-terminal halves of the split PH domain by the coiled coil formation. The reassembled split PH domain binds to IP(3), a target molecule of the parent PLCdelta(1) PH domain, but not to L-IP(3), indicating that the split PH domain maintains a binding selectivity similar to the native PLCdelta(1) PH domain. These results demonstrate that the split PH domain folds into a functional structure when the split halves are brought to close proximity, and suggest that the native split PH domains, such as found in PLCgamma(1), have distinctive functions upon the reassembly.  相似文献   

10.
The X‐ray crystal structure of a bovine antibody (BLV1H12) revealed a unique structure in its ultralong heavy chain complementarity determining region 3 (CDR3H) that folds into a solvent‐exposed β‐strand “stalk” fused to a disulfide crosslinked “knob” domain. We have substituted an antiparallel heterodimeric coiled‐coil motif for the β‐strand stalk in this antibody. The resulting antibody (Ab‐coil) expresses in mammalian cells and has a stability similar to that of the parent bovine antibody. MS analysis of H–D exchange supports the coiled‐coil structure of the substituted peptides. Substitution of the knob‐domain of Ab‐coil with bovine granulocyte colony‐stimulating factor (bGCSF) results in a stably expressed chimeric antibody, which proliferates mouse NFS‐60 cells with a potency comparable to that of bGCSF. This work demonstrates the utility of this novel coiled‐coil CDR3 motif as a means for generating stable, potent antibody fusion proteins with useful pharmacological properties.  相似文献   

11.
Silica aerogels possess a variety of unique and remarkable properties, but the mechanisms of silicon alkoxide, Si(OR)4, hydrolyses and oligomerization in the initial stage of sol–gel processes are still not well understood. On the basis of density functional theory calculations at the B3LYP/6‐31G(d,p)//B3LYP/6‐311++G(d,p) basis set level, the hydrolysis and oligomerization reactions of Si(OR)4 in neutral, acidic, and alkaline solutions were systematically investigated and we found that in acidic solutions the precursor Si(OCH3)4 was inclined to hydrolyze rather than to condense and the hydrolysis processes were energetically more favorable than the neutral ones. In alkaline solutions, the hydrolysis products oligomerize through an SN1 dimerization mechanism and the condensation rates are fast to form denser colloidal aerogels. Our calculations also testify that the subsequent cyclization reactions are energetically unfavorable.  相似文献   

12.
When the bulk oligomerization of 1,3‐dioxolan‐2‐one (ethylene carbonate, EC) and 4‐methyl‐1,3‐dioxolan‐2‐one (propylene carbonate, PC) with the 2,2‐bis(4‐hydroxyphenyl)propane (bisphenol‐A, BPA)/base system (bases such as KHCO3, K2CO3, KOH, Li2CO3, and t‐BuOK) was investigated at elevated temperature, significant differences were observed. Oligomerization of EC initiated by BPA/base readily takes place, but the oligomerization of PC is inhibited. The very first propylene carbonate/propylene oxide unit readily forms a phenolic ether bond with the functional groups of BPA phenolate, but the addition of the second monomer unit is rather slow. The oligomerization of EC yields symmetrical oligo(ethylene oxide) side chains. According to IR studies the oligomeric chains formed from PC with BPA contain not only ether but also carbonate bonds. The in situ step oligomerization of the BPA dipropoxylate was also identified by SEC, and a possible reaction mechanism is proposed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 545–550, 1999  相似文献   

13.
BRCTs are phosphoserine‐binding domains found in proteins involved in DNA repair, DNA damage response and cell cycle regulation. BRCA1 is a BRCT domain‐containing, tumor‐suppressing protein expressed in the cells of breast and other human tissues. Mutations in BRCA1 have been found in ca. 50 % of hereditary breast cancers. Cell‐permeable, small‐molecule BRCA1 inhibitors are promising anticancer agents, but are not available currently. Herein, with the assist of microarray‐based platforms, we have discovered the first cell‐permeable protein–protein interaction (PPI) inhibitors against BRCA1. By targeting the (BRCT)2 domain, we showed compound 15 a and its prodrug 15 b inhibited BRCA1 activities in tumor cells, sensitized these cells to ionizing radiation‐induced apoptosis, and showed synergistic inhibitory effect when used in combination with Olaparib (a small‐molecule inhibitor of poly‐ADP‐ribose polymerase) and Etoposide (a small‐molecule inhibitor of topoisomerase II). Unlike previously reported peptide‐based PPI inhibitors of BRCA1, our compounds are small‐molecule‐like and could be directly administered to tumor cells, thus making them useful for future studies of BRCA1/PARP‐related pathways in DNA damage and repair response, and in cancer therapy.  相似文献   

14.
DAPI (4′,6‐diamidino‐2‐phenylindole) is a widely used fluorescent dye, whose complicated binding features to DNAs and RNAs have been the object of debates and are still not fully understood. In this study, different approaches were employed, including binding equilibrium measurements (spectrofluorometry), melting experiments (spectrophotometry), viscometric measurements, circular dichroism, and T‐jump kinetic analyses; all data concur in shedding light on the complex mechanistic aspects of the binding mode of DAPI to natural DNA. Conditions are found that induce the mode of the DAPI/DNA interaction to change from groove binding to intercalation. Moreover, it is observed, for the first time, that DAPI is able to induce the formation of a rather compact polymer–dye adduct under particular conditions. The results suggest that this form is a folded or coiled DNA structure stabilized by DAPI dye bridges.  相似文献   

15.
The palladium‐iminophosphine complex [Pd(P‐N)(CH3)Cl] (P‐N = o‐diphenyl‐phosphino‐N‐benzaldimine) has been found to be a catalyst for dimerization and trimerization of ethylene. Some mechanistic insight concerning this oligomerization is discussed.  相似文献   

16.
Metalloproteins are an attractive target for de novo design. Usually, natural proteins incorporate two or more (hetero- or homo-) metal ions into their frameworks to perform their functions, but the design of multiple metal-binding sites is usually difficult to achieve. Here, we undertook the de novo engineering of heterometal-binding sites, Ni(II) and Cu(II), into a designed coiled coil structure based on an isoleucine zipper (IZ) peptide. Previously, we described two peptides, IZ-3adH and IZ-3aH. The former has two His residues and forms a triple-stranded coiled coil after binding Ni(II), Zn(II), or Cu(II). The latter has one His residue, which allowed binding with Cu(II) and Zn(II), but not with Ni(II). On the basis of these properties, we newly designed IZ(5)-2a3adH as a heterometal-binding peptide. This peptide can bind Cu(II) and Ni(II) simultaneously in the hydrophobic core of the triple-stranded coiled coil. The first metal ion binding induced the folding of the peptide into the triple-stranded coiled coil, thereby promoting the second metal ion binding. This is the first example of a peptide that can bind two different metal ions. This construction should provide valuable insights for the de novo design of metalloproteins.  相似文献   

17.
18.
The self‐assembly behavior of polypeptides plays an essential role to form biological and functional macromolecules, which have attracted a lot of attention due to their excellent characters. Understanding the polypeptide self‐assembly systems and dynamic behaviors is fundamental to improve the potential of biomedical applications. In this work, coiled coil polypeptides PC10 and PC10P were designed and biosynthesized. PC10 and PC10P could form nanogels when the concentration of polypeptides was less than 2% (m/v). The dynamic behaviors of PC10 and PC10P were measured by Förster resonance energy transfer method based on a capillary electrophoresis system. The Förster resonance energy transfer efficiency of this system was 60.4%, and the distance of self‐assembled domains in the polypeptides was calculated as 6.14 nm, demonstrating that the exchange behavior occurred between two different polypeptides containing the same coiled coil region.  相似文献   

19.
The development of a method is described for the chemical labeling of proteins which occurs with high target specificity, proceeds within seconds to minutes, and offers a free choice of the reporter group. The method relies upon the use of peptide templates, which align a thioester and an N‐terminal cysteinyl residue such that an acyl transfer reaction is facilitated at nanomolar concentrations. The protein of interest is N‐terminally tagged with a 22 aa long Cys‐E3 peptide (acceptor), which is capable of forming a coiled‐coil with a reporter‐armed K3 peptide (donor). This triggers the transfer of the reporter to the acceptor on the target protein. Because ligation of the two interacting peptides is avoided, the mass increase at the protein of interest is minimal. The method is exemplified by the rapid fluorescent labeling and fluorescence microscopic imaging of the human Y2 receptor on living cells.  相似文献   

20.
Systematic model investigations of the molecular interactions of fluorinated amino acids within native protein environments substantially improve our understanding of the unique properties of these building blocks. A rationally designed heterodimeric coiled coil peptide (VPE/VPK) and nine variants containing amino acids with variable fluorine content in either position a16 or d19 within the hydrophobic core were synthesized and used to evaluate the impact of fluorinated amino acid substitutions within different hydrophobic protein microenvironments. The structural and thermodynamic stability of the dimers were examined by applying both experimental (CD spectroscopy, FRET, and analytical ultracentrifugation) and theoretical (MD simulations and MM‐PBSA free energy calculations) methods. The coiled coil environment imposes position‐dependent conformations onto the fluorinated side chains and thus affects their packing and relative orientation towards their native interaction partners. We find evidence that such packing effects exert a significant influence on the contribution of fluorine‐induced polarity to coiled coil folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号