首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first comprehensive I(III)―X (X = F, Br, CN, N3, CF3, etc.) bond dissociation energy (BDE) scales for benziodoxol(on)e‐based hypervalent iodine reagents have been developed by virtue of DFT calculations. Excellent correlation is observed between the I(III)―X BDEs and the X―H BDEs, offering a powerful avenue to quickly estimate the group‐transfer ability of a novel benziodoxol(on)e‐based hypervalent reagent.  相似文献   

2.
The first direct alkynylation of 2‐vinylphenols was developed. The rationally optimized hypervalent iodine reagent TIPS‐EBX* in combination with [(Cp*RhCl2)2] as a C? H‐activating transition metal catalyst enables the construction of a variety of highly substituted 1,3‐enynes in high yields of up to 98 %. This novel C? H activation method shows excellent chemoselectivity and exclusive (Z)‐stereoselectivity, and it is also remarkably mild and tolerates a variety of functional groups. Furthermore, synthetic modifications of the resulting 1,3‐enynes were demonstrated. To our knowledge, this is the first example for an OH‐directed C? H alkynylation with hypervalent iodine reagents.  相似文献   

3.
According to the Grotthuss–Draper law, light must be absorbed by a substrate to initiate a photoreaction. There have been several reports, however, on the promotion of photoreactions using hypervalent iodine during irradiation with light from a non‐absorbing region. This contradiction gave rise to a mystery regarding photoreactions involving hypervalent iodine. We demonstrated that the photoactivation of hypervalent iodine with light from the apparently non‐absorbing region proceeds via a direct S0→Tn transition, which has been considered a forbidden process. Spectroscopic, computational, and synthetic experimental results support this conclusion. Moreover, the photoactivation mode could be extended to monovalent iodine and bromine, as well as bismuth(III)‐containing molecules, providing new possibilities for studying photoreactions that involve heavy‐atom‐containing molecules.  相似文献   

4.
Building on earlier results, a direct metal‐free α‐ arylation of substituted cyclic 1,3‐diones using ArI(O2CCF3)2 reagents has been developed; unlike other arylative approaches, the arylated products retain the iodine substituent ortho to the newly formed C?C bond. The mechanism is explored by using DFT calculations, which show a vanishingly small activation barrier for the C?C bond‐forming step. In fact, taking advantage of an efficient in situ hypervalent activation, the iodoarenes are shown to undergo a cross‐ dehydrogenative C?C coupling at the C?H ortho to the iodine. When Oxone is used as terminal oxidant, the process is found to benefit from a rapid initial formation of the hypervalent ArI(OR)2 species and the sulfate‐accelerated final coupling with a ketone. This method complements the ipso selectivity obtained in the metal‐catalyzed α‐arylation of carbonyl compounds.  相似文献   

5.
Hypervalent iodine chemistry is now a well‐established area of organic chemistry. Novel hypervalent iodine reagents have been introduced in many different transformations owing to their mild reaction conditions and environmentally friendly nature. Recently, these reagents have received particular attention because of their applications in catalysis. Numerous hypervalent iodine‐catalyzed oxidative functionalizations such as oxidations of various alcohols and phenols, α‐functionalizations of carbonyl compounds, cyclizations, and rearrangements have been developed successfully. In these catalytic reactions stoichiometric oxidants such as mCPBA or oxone play a crucial role to generate the iodine(III) or iodine(V) species in situ. In this Focus Review, recent developments of hypervalent iodine‐catalyzed reactions are described including some asymmetric variants. Catalytic reactions using recyclable hypervalent iodine catalysts are also covered.  相似文献   

6.
According to the Grotthuss–Draper law, light must be absorbed by a substrate to initiate a photoreaction. There have been several reports, however, on the promotion of photoreactions using hypervalent iodine during irradiation with light from a non-absorbing region. This contradiction gave rise to a mystery regarding photoreactions involving hypervalent iodine. We demonstrated that the photoactivation of hypervalent iodine with light from the apparently non-absorbing region proceeds via a direct S0→Tn transition, which has been considered a forbidden process. Spectroscopic, computational, and synthetic experimental results support this conclusion. Moreover, the photoactivation mode could be extended to monovalent iodine and bromine, as well as bismuth(III)-containing molecules, providing new possibilities for studying photoreactions that involve heavy-atom-containing molecules.  相似文献   

7.
Degradation of the highly reactive hypervalent trifluoromethylation iodine reagent PhI(OAc)(CF3), which can only be generated in situ with mixing PhI(OAc)2 and TMSCF3 in the presence of CsF, was studied by ESI‐MS and GC‐MS combined with 19F‐NMR. The important transient intermediate PhICF3+ was determined by ESI‐MS, and the major volatile products containing CF3 were identified with the authentic compounds by using GC‐MS, such as trifluoromethylbenzene, 2‐iodobenzotrifluoride, 3‐iodobenzotrifluoride, 4‐iodobenzotrifluoride. Meanwhile, more evidences obtained with 19F‐NMR were given for such degradation reaction. A possible rapid CF3 radical transfer reaction pathway was proposed to clarify such degradation progress based on the experimental results. Therefore, this study may be helpful in elucidating the intrinsic reactivity of PhI(OAc)(CF3) and the possible competing side reactions caused by such self‐degradation pathway.  相似文献   

8.
The enantioselective oxyarylation of (E)‐6‐aryl‐1‐silyloxylhex‐3‐ene was achieved using a lactate‐based chiral hypervalent iodine(III) reagent in the presence of boron trifluoride diethyl etherate. The silyl ether promotes the oxidative cyclization, and enhances the enantioselectivity. In addition, the corresponding aminoarylation was achieved.  相似文献   

9.
A transition‐metal‐free synthesis of spiro compounds from 9H‐fluoren‐9‐ols mediated by hypervalent iodine is reported. In this reaction, an unprecedented β‐carbon elimination of tertiary alkoxyliodine(III) to form new diaryliodonium salts is proposed. The obtained phenol intermediates undergo oxidative dearomatization to furnish a class of oxo‐spiro compounds. This domino reaction significantly increases the complexity of these molecules and shows excellent regio‐ and stereoselectivity.  相似文献   

10.
An air‐ and moisture‐stable fluoroiodane in the presence of AgBF4 is suitable for selective geminal difluorination of styrenes under mild reaction conditions. One of the C? F bonds is formed by transfer of electrophilic fluorine from the hypervalent iodine reagent, while the other one arises from the tetrafluoroborate counterion of silver. Deuterium‐isotope‐labelling experiments and rearrangement of methyl styrene substrates suggest that the reaction proceeds through a phenonium ion intermediate.  相似文献   

11.
The first enantioselective dearomatizative spirocyclization of 1‐hydroxy‐N‐aryl‐2‐naphthamide derivatives has been accomplished by chiral organoiodine catalysis to stereoselectively create an all‐carbon stereogenic center, providing a straightforward approach to access spirooxindole derivatives in good yields and with high to excellent levels of enantioselectivity. Chiral hypervalent phenyl‐λ3‐iodanes generated in situ from the oxidation of the chiral phenyl iodine actually participate in the asymmetric oxidative dearomatizative spirocyclization reaction.  相似文献   

12.
Two new nanovehicles that have extended aromatic platforms as the cargo zones have been obtained. Two strategies were considered for the formation of the perylene core from two naphthalene precursors. The first was based on a Scholl‐type reaction involving an oxidant, and the second used a brominated derivative to perform a homocoupling reaction. The first strategy failed under diverse coupling conditions in the presence of several strong oxidants. Nevertheless, the use of CoF3 in trifluoroacetic acid triggered a dimerization reaction between two ester groups of one molecule and the naphthalene unit of another, thereby surprisingly yielding a ten‐membered carbon macrocycle. The second strategy encountered a lack of reactivity of the substrate under several homocoupling conditions. The dimerization was not easily performed but Ullmann‐type conditions ultimately gave the expected product. The low yield and low solubility of the product encouraged us to modify our initial design. The synthesis of a new chassis that incorporated additional tert‐butyl groups improved the solubility of the molecules and also prevented overcyclization of the aromatic platform by blocking these positions. Some p‐phenylene spacers were also intercalated between the iodine and perylene centers to increase the reactivity of the halide towards coupling reactions. Two new chassis were obtained by Scholl‐type oxidative coupling using FeCl3 as the oxidant. The introduction of four triptycene wheels allowed the formation of the two corresponding nanovehicles.  相似文献   

13.
An asymmetric palladium and copper co‐catalyzed Heck/Sonogashira reaction between o‐iodoacrylanilides and terminal alkynes to synthesize chiral oxindoles was developed. In particular, a wide range of CF3‐substituted o‐iodoacrylanilides reacted with terminal alkynes, affording the corresponding chiral oxindoles containing trifluoromethylated quaternary stereogenic centers in high yields with excellent enantioselectivities (94–98 % ee). This asymmetric Heck/Sonogashira reaction provides a general approach to access oxindole derivatives containing quaternary stereogenic centers including CF3‐substituted ones.  相似文献   

14.
The organic chemistry of hypervalent organoiodine compounds has been an area of unprecedented development. This surge in interest in the use of hypervalent iodine compounds has mainly been owing to their highly selective oxidizing properties, environmentally benign character and commercial availability. Hypervalent iodine reagents have also been used as an alternative to toxic heavy metals, owing to their low toxicity and ease of handling. Hypervalent organoiodine(III) reagents are versatile oxidants that have been successfully employed to extend the scope of selective oxidative transformations of complex organic molecules in synthetic chemistry. This Focus Review concerns the tandem in situ generation and 1,5‐electrocyclization of N‐heteroaryl nitrilimines into fused triazoles. We describe the importance of recently developed hypervalent‐organoiodine(III)‐catalyzed oxidative cyclization reactions, building towards the conclusion that hypervalent iodine chemistry is a promising frontier for oxidative cyclization, in particular of hydrazones, for the synthesis of fused triazoles.  相似文献   

15.
An oxidative ipso-rearrangement mediated by a hypervalent iodine reagent that enables rapid generation of a functionalized dienone system containing a quaternary carbon center connected to several sp(2) centers has been developed. The process occurs through transfer of an aryl group from a silyl segment present on the lateral chain. As an illustration of the potential of this transformation, a total synthesis of sceletenone, a small alkaloid, is described.  相似文献   

16.
Ethynylbenziodoxol(on)e (EBX) cyclic hypervalent iodine reagents have become popular reagents for the alkynylation of radicals and nucleophiles, but only offer limited possibilities for further structure and reactivity fine-tuning. Herein, the synthesis of new N-heterocyclic hypervalent iodine reagents with increased structural flexibility based on amide, amidine and sulfoximine scaffolds is reported. Solid-state structures of the reagents are reported and the analysis of the I−Calkyne bond lengths allowed assessing the trans-effect of the different substituents. Molecular electrostatic potential (MEP) maps of the reagents, derived from DFT computations, revealed less pronounced σ-hole regions for sulfonamide-based compounds. Most reagents reacted well in the alkynylation of β-ketoesters. The alkynylation of thiols afforded more variable yields, with compounds with a stronger σ-hole reacting better. In metal-mediated transformations, the N-heterocyclic hypervalent iodine reagents gave inferior results when compared to the O-based EBX reagents.  相似文献   

17.
Direct acyl radical formation of linear aldehydes (RCH2‐CHO) and subsequent hydroacylation with electron‐deficient olefins can be effected with various types of metal and nonmetal catalysts/reagents. In marked contrast, however, no successful reports on the use of branched aldehydes have been made thus far because of their strong tendency of generating alkyl radicals through the facile decarbonylation of acyl radicals. Here, use of a hypervalent iodine(III) catalyst under visible light photolysis allows a mild way of generating acyl radicals from various branched aldehydes, thereby giving the corresponding hydroacylated products almost exclusively. Another characteristic feature of this approach is the catalytic use of hypervalent iodine(III) reagent, which is a rare example on the generation of radicals in hypervalent iodine chemistry.  相似文献   

18.
The relationship between peptide structure and electron transfer dissociation (ETD) is important for structural analysis by mass spectrometry. In the present study, the formation, structure and reactivity of the reaction intermediate in the ETD process were examined using a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. ETD product ions of zwitterionic tryptophan (Trp) and Trp‐containing dipeptides (Trp‐Gly and Gly‐Trp) were detected without reionization using non‐covalent analyte complexes with Ca2+ and 18‐crown‐6 (18C6). In the collision‐induced dissociation, NH3 loss was the main dissociation pathway, and loss related to the dissociation of the carboxyl group was not observed. This indicated that Trp and its dipeptides on Ca2+(18C6) adopted a zwitterionic structure with an NH3+ group and bonded to Ca2+(18C6) through the COO? group. Hydrogen atom loss observed in the ETD spectra indicated that intermolecular electron transfer from a molecular anion to the NH3+ group formed a hypervalent ammonium radical, R‐NH3, as a reaction intermediate, which was unstable and dissociated rapidly through N–H bond cleavage. In addition, N–Cα bond cleavage forming the z1 ion was observed in the ETD spectra of Trp‐GlyCa2+(18C6) and Gly‐TrpCa2+(18C6). This dissociation was induced by transfer of a hydrogen atom in the cluster formed via an N–H bond cleavage of the hypervalent ammonium radical and was in competition with the hydrogen atom loss. The results showed that a hypervalent radical intermediate, forming a delocalized hydrogen atom, contributes to the backbone cleavages of peptides in ETD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Direct acyl radical formation of linear aldehydes (RCH2‐CHO) and subsequent hydroacylation with electron‐deficient olefins can be effected with various types of metal and nonmetal catalysts/reagents. In marked contrast, however, no successful reports on the use of branched aldehydes have been made thus far because of their strong tendency of generating alkyl radicals through the facile decarbonylation of acyl radicals. Here, use of a hypervalent iodine(III) catalyst under visible light photolysis allows a mild way of generating acyl radicals from various branched aldehydes, thereby giving the corresponding hydroacylated products almost exclusively. Another characteristic feature of this approach is the catalytic use of hypervalent iodine(III) reagent, which is a rare example on the generation of radicals in hypervalent iodine chemistry.  相似文献   

20.
Herein, the synthesis and characterization of a hypervalent‐iodine‐based reagent that enables a direct and selective nitrooxylation of enolizable C?H bonds to access a broad array of organic nitrate esters is reported. This compound is bench stable, easy‐to‐handle, and delivers the nitrooxy (‐ONO2) group under mild reaction conditions. Activation of the reagent by Brønsted and Lewis acids was demonstrated in the synthesis of nitrooxylated β‐keto esters, 1,3‐diketones, and malonates, while its activity under photoredox catalysis was shown in the synthesis of nitrooxylated oxindoles. Detailed mechanistic studies including pulse radiolysis, Stern–Volmer quenching studies, and UV/Vis spectroelectrochemistry reveal a unique single‐electron‐transfer (SET)‐induced concerted mechanistic pathway not reliant upon generation of the nitrate radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号