首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reported is a novel palladium(II)‐initiated Catellani‐type reaction that utilizes widely accessible aryl boronic acids as the substrates instead of aryl halides, thereby greatly expanding the existing scope of this powerful transformation. This borono‐Catellani reaction was promoted by cooperative catalysis between Pd(OAc)2 and the inexpensive 5‐norbornene‐2‐carbonitrile. Practicality is the striking feature of the reaction: it is run open to air at ambient temperature and no phosphine ligand is needed. This mild, chemoselective, and scalable protocol is compatible with a large range of readily available functionalized aryl boronic acids and bromides, as well as terminating olefins (50 examples, 39–97 % yields). Moreover, the orthogonal reactivity between the borono‐Catellani and classical Catellani reaction was demonstrated. This work is expected to open new avenues for developing novel Catellani‐type reactions.  相似文献   

2.
This paper reports a green magnetic quasiheterogeneous efficient palladium catalyst in which Pd0 nanoparticles have been immobilized in self‐assembled hyperbranched polyglycidole (SAHPG)‐coated magnetic Fe3O4 nanoparticles (Fe3O4‐SAHPG‐Pd0). This catalyst has been used for effective ligandless Pd catalyzed Suzuki–Miyaura coupling reactions of different aryl halides with substituted boronic acids at room temperature and in aqueous media. Herein, SAHPG is used as support; it also acts as a reducing agent and stabilizer to promote the transformation of PdII to Pd0 nanoparticles. Also, this environmental friendly quasiheterogeneous catalyst is employed for the first time in the synthesis of new pyrimido[4,5‐b]indoles via oxidative addition/C? H activation reactions on the pyrimidine rings, which were obtained with higher yield and faster than when Pd(OAc)2 was used as the catalyst. Interestingly, the above‐mentioned catalyst could be recovered in a facile manner from the reaction mixture by applying an external magnet device and recycled several times with no significant decrease in the catalytic activity.  相似文献   

3.
Enabled by merging iridium photoredox catalysis and palladium catalysis, α‐oxocarboxylate salts can be decarboxylatively coupled with aryl halides to generate aromatic ketones and amides at room temperature. DFT calculations suggest that this reaction proceeds through a Pd0–PdII–PdIII pathway, in which the PdIII intermediate is responsible for reoxidizing IrII to complete the IrIII–*IrIII–IrII photoredox cycle.  相似文献   

4.
We report a cooperative catalytic system comprising a PdII complex, XPhos, and the potassium salt of 5‐norbornene‐2‐carboxylic acid that enables the use of epoxides as alkylating reagents in the Catellani reaction, thereby expanding the existing paradigm of this powerful transformation. The potassium salt of inexpensive 5‐norbornene‐2‐carboxylic acid acts as both mediator and base in the process. This mild, chemoselective, scalable, and atom‐economical protocol is compatible with a wide variety of readily available functionalized aryl iodides and epoxides, as well as terminating olefins. The resulting products undergo facile oxa‐Michael addition to furnish ubiquitous isochroman scaffolds.  相似文献   

5.
The study of palladium(IV) species has great implications for PdII/PdIV‐mediated catalysis. However, most of the PdIV complexes rapidly decompose under ambient conditions, which makes the isolation, characterization and further reactivity study very challenging. The reported ancillary ligand platforms to stabilize PdIV species are dominated by chelating N‐donors such as bipyridines. In this work, we present two PdIV complexes with scarcely used C‐donors as the supporting platform. The anionic aryl donor and MIC (MIC=mesoionic carbene) are combined in a [CC′C]‐type pincer framework to access a series of ambient‐stable PdIV tris(halido) complexes. Their synthesis, solid‐state structures, stability, and reactivity are presented. To the best of our knowledge, the work presented herein reports the first isolated PdIV–MIC as well as the first PdIV carbene‐based aryl pincer.  相似文献   

6.
Decarboxylative cross‐coupling reactions of substituted 2‐carboxyazine N‐oxides, with a variety of (hetero)aryl halides, by bimetallic Pd0/CuI and Pd0/AgI catalysis are reported. Two possible pathways, a conventional bimetallic‐catalyzed decarboxylative arylation, as well as a protodecarboxylative/direct C?H arylation sequence have been considered. These methods provide the first general decarboxylative arylation methodology for the 2‐carboxyazine series.  相似文献   

7.
《化学:亚洲杂志》2017,12(14):1749-1757
The catalytic cycles of palladium‐catalyzed silylation of aryl iodides, which are initiated by oxidative addition of hydrosilane or aryl iodide through three different mechanisms characterized by intermediates R3Si−PdII−H (Cycle A), Ar−PdII−I (Cycle B), and PdIV (Cycle C), have been explored in detail by hybrid DFT. Calculations suggest that the chemical selectivity and reactivity of the reaction depend on the ligation state of the catalyst and specific reaction conditions, including feeding order of substrates and the presence of base. For less bulky biligated catalyst, Cycle C is energetically favored over Cycle A, through which the silylation process is slightly favored over the reduction process. Interestingly, for bulky monoligated catalyst, Cycle B is energetically more favored over generally accepted Cycle A, in which the silylation channel is slightly disfavored in comparison to that of the reduction channel. Moreover, the inclusion of base in this channel allows the silylated product become dominant. These findings offer a good explanation for the complex experimental observations. Designing a reaction process that allows the oxidative addition of palladium(0) complex to aryl iodide to occur prior to that with hydrosilane is thus suggested to improve the reactivity and chemoselectivity for the silylated product by encouraging the catalytic cycle to proceed through Cycles B (monoligated Pd0 catalyst) or C (biligated Pd0 catalyst), instead of Cycle A.  相似文献   

8.
The sulfonated palladium(II) N‐heterocyclic carbene complex PdII(NHC)SO3?, supported on poly(4‐vinylpyridinium chloride), was used as a heterogeneous, recyclable and active catalyst for the Suzuki–Miyaura reaction. This catalyst was applied for coupling of various aryl halides with phenylboronic acid and the corresponding products were obtained in excellent yields and short reaction times. The catalyst was characterized using Fourier transform infrared and diffuse reflectance UV–visible spectroscopies, scanning electron microscopy and elemental analysis. After each reaction, the catalyst was recovered easily by simple filtration and reused several times without significant loss of its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Reported is a modular one‐step three‐component synthesis of tetrahydroisoquinolines using a Catellani strategy. This process exploits aziridines as the alkylating reagents, through palladium/norbornene cooperative catalysis, to enable a Catellani/Heck/aza‐Michael addition cascade. This mild, chemoselective, and scalable protocol has broad substrate scope (43 examples, up to 90 % yield). The most striking feature of this protocol is the excellent regioselectivity and diastereoselectivity observed for 2‐alkyl‐ and 2‐aryl‐substituted aziridines to access 1,3‐cis‐substituted and 1,4‐cis‐substituted tetrahydroisoquinolines, respectively. Moreover, this is a versatile process with high step and atom economy.  相似文献   

10.
Recent years have seen the rapid development of a new field of palladium catalysis in organic synthesis. This chemistry takes place outside the usually encountered Pd0/PdII cycles. It is characterized by the presence of strong oxidants, which prevent further palladium(II)‐promoted reactions at a given point of the catalytic cycle by selective metal oxidation. The resulting higher‐oxidation‐state palladium complexes have been used to develop a series of new synthetic transformations that cannnot be realized within conventional palladium catalysis. This type of catalysis by palladium in a higher oxidation state is of significant synthetic potential.  相似文献   

11.
Reduction of the Pd?PEPPSI precatalyst to a Pd0 species is generally thought to be essential to drive Buchwald–Hartwig amination reactions through the well‐ documented Pd0/PdII catalytic cycle and little attention has been paid to other possible mechanisms. Considered here is the Pd?PEPPSI‐catalyzed aryl amination of chlorobenzene with aniline. A neat reaction system was used in new experiments, from which the potentially reductive roles of the solvent and labile ligand of the PEPPSI complex in leading to Pd0 species are ruled out. Computational results demonstrate that anilido‐containing PdII intermediates involving σ‐bond metathesis in pathways leading to the diphenylamine product have relatively low barriers. Such pathways are more favorable energetically than the corresponding reductive elimination reactions resulting in Pd0 species and other putative routes, such as the PdII/PdIV mechanism, single electron transfer mechanism, and halide atom transfer mechanism. In some special cases, if reactants/additives are inadequate to reduce a PdII precatalyst, a PdII‐involved σ‐bond metathesis mechanism might be feasible to drive the Buchwald–Hartwig amination reactions.  相似文献   

12.
Three‐component couplings were achieved from common aryl halides, alkyl halides, and heteroarenes under palladium and norbornene co‐catalysis. The reaction forges hindered aryl–heteroaryl bonds and introduces ortho‐alkyl groups to aryl rings. Various heterocycles such as oxazoles, thiazoles and thiophenes underwent efficient coupling. The heteroarenes were deprotonated in situ by bases without the assistance of palladium catalysts.  相似文献   

13.
A series of new, easily activated NHC–PdII precatalysts featuring a trans‐oriented morpholine ligand were prepared and evaluated for activity in carbon‐sulfur cross‐coupling chemistry. [(IPent)PdCl2(morpholine)] (IPent=1,3‐bis(2,6‐di(3‐pentyl)phenyl)imidazol‐2‐ylidene) was identified as the most active precatalyst and was shown to effectively couple a wide variety of deactivated aryl halides with both aryl and alkyl thiols at or near ambient temperature, without the need for additives, external activators, or pre‐activation steps. Mechanistic studies revealed that, in contrast to other common NHC–PdII precatalysts, these complexes are rapidly reduced to the active NHC–Pd0 species at ambient temperature in the presence of KOtBu, thus avoiding the formation of deleterious off‐cycle PdII–thiolate resting states.  相似文献   

14.
The use of Pd catalysis as a means to synthesize organic halides has recently received increased attention. Among the reported methods is the Pd‐catalyzed carboiodination, which uses extremely bulky ligands to facilitate carbon–halogen reductive elimination from PdII as the key catalytic step. When approaching substrates exhibiting low stereoselectivity, catalyst troubleshooting becomes difficult as there are few ligands known to promote the key reductive elimination. Herein, we present our finding that tertiary amines act as weakly coordinating ligands which significantly enhance diastereoselectivity in the Pd/QPhos‐catalyzed carboiodination of chiral N‐allyl carboxamides. This methodology allows efficient access to enantioenriched and densely functionalized dihydroisoquinolinones, and has been applied toward the asymmetric formal synthesis of (+)‐corynoline.  相似文献   

15.
This report widens the repertoire of emerging PdI catalysis to carbon–heteroatom, that is, C−S bond formation. While Pd0‐catalyzed protocols may suffer from the formation of poisonous sulfide‐bound off‐cycle intermediates and lack of selectivity, the mechanistically diverse PdI catalysis concept circumvents these challenges and allows for C−S bond formation (S–aryl and S–alkyl) of a wide range of aryl halides. Site‐selective thiolations of C−Br sites in the presence of C−Cl and C−OTf were achieved in a general and a priori predictable fashion. Computational, spectroscopic, X‐ray, and reactivity data support dinuclear PdI catalysis to be operative. Contrary to air‐sensitive Pd0, the active PdI species was easily recovered in the open atmosphere and subjected to multiple rounds of recycling.  相似文献   

16.
This report widens the repertoire of emerging PdI catalysis to carbon–heteroatom, that is, C?S bond formation. While Pd0‐catalyzed protocols may suffer from the formation of poisonous sulfide‐bound off‐cycle intermediates and lack of selectivity, the mechanistically diverse PdI catalysis concept circumvents these challenges and allows for C?S bond formation (S–aryl and S–alkyl) of a wide range of aryl halides. Site‐selective thiolations of C?Br sites in the presence of C?Cl and C?OTf were achieved in a general and a priori predictable fashion. Computational, spectroscopic, X‐ray, and reactivity data support dinuclear PdI catalysis to be operative. Contrary to air‐sensitive Pd0, the active PdI species was easily recovered in the open atmosphere and subjected to multiple rounds of recycling.  相似文献   

17.
Metal‐catalyzed cross‐coupling reactions belong to the most important transformations in organic synthesis. Copper catalysis has received great attention owing to the low toxicity and low cost of copper. However, traditional Ullmann‐type couplings suffer from limited substrate scopes and harsh reaction conditions. The introduction of several bidentate ligands, such as amino acids, diamines, 1,3‐diketones, and oxalic diamides, over the past two decades has totally changed this situation as these ligands enable the copper‐catalyzed coupling of aryl halides and nucleophiles at both low reaction temperatures and catalyst loadings. The reaction scope has also been greatly expanded, rendering this copper‐based cross‐coupling attractive for both academia and industry. In this Review, we have summarized the latest progress in the development of useful reaction conditions for the coupling of (hetero)aryl halides with different nucleophiles. Additionally, recent advances in copper‐catalyzed coupling reactions with aryl boronates and the copper‐based trifluoromethylation of aromatic electrophiles will be discussed.  相似文献   

18.
Carboxylate esters have many desirable features as electrophiles for catalytic cross‐coupling: they are easy to access, robust during multistep synthesis, and mass‐efficient in coupling reactions. Alkenyl carboxylates, a class of readily prepared non‐aromatic electrophiles, remain difficult to functionalize through cross‐coupling. We demonstrate that Pd catalysis is effective for coupling electron‐deficient alkenyl carboxylates with arylboronic acids in the absence of base or oxidants. Furthermore, these reactions can proceed by two distinct mechanisms for C?O bond activation. A Pd0/II catalytic cycle is viable when using a Pd0 precatalyst, with turnover‐limiting C?O oxidative addition; however, an alternative pathway that involves alkene carbopalladation and β‐carboxyl elimination is proposed for PdII precatalysts. This work provides a clear path toward engaging myriad oxygen‐based electrophiles in Pd‐catalyzed cross‐coupling.  相似文献   

19.
Described here is a new and viable approach to achieve Pd catalysis for aerobic oxidation systems (AOSs) by circumventing problems associated with both the oxidation and the catalysis through an all‐in‐one strategy, employing a robust metal–organic framework (MOF). The rational assembly of a PdII catalyst, phenanthroline ligand, and CuII species (electron‐transfer mediator) into a MOF facilitates the fast regeneration of the PdII active species, through an enhanced electron transfer from in situ generated Pd0 to CuII, and then CuI to O2, trapped in the framework, thus leading to a 10 times higher turnover number than that of the homogeneous counterpart for Pd‐catalyzed desulfitative oxidative coupling reactions. Moreover, the MOF catalyst can be reused five times without losing activity. This work provides the first exploration of using a MOF as a promising platform for the development of Pd catalysis for AOSs with high efficiency, low catalyst loading, and reusability.  相似文献   

20.
We present a general approach to C? P bond formation through the cross‐coupling of aryl halides with a dialkyl phosphite, diphenylphosphine oxide, and diphenylphosphane by using [NiCl2(dppp)] as catalyst (dppp=1,3‐bis(diphenylphosphino)propane). This catalyst system displays a broad applicability that is capable of catalyzing the cross‐coupling of aryl bromides, particularly a range of unreactive aryl chlorides, with various types of phosphorus substrates, such as a dialkyl phosphite, diphenylphosphine oxide, and diphenylphosphane. Consequently, the synthesis of valuable phosphonates, phosphine oxides, and phosphanes can be achieved with one catalyst system. Moreover, the reaction proceeds not only at a much lower temperature (100–120 °C) relative to the classic Arbuzov reaction (ca. 160–220 °C), but also without the need of external reductants and supporting ligands. In addition, owing to the relatively mild reaction conditions, a range of labile groups, such as ether, ester, ketone, and cyano groups, are tolerated. Finally, a brief mechanistic study revealed that by using [NiCl2(dppp)] as a catalyst, the NiII center could be readily reduced in situ to Ni0 by the phosphorus substrates due to the influence of the dppp ligand, thereby facilitating the oxidative addition of aryl halides to a Ni0 center. This step is the key to bringing the reaction into the catalytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号