首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Mild conditions are reported for the hydroxylation of aliphatic C? H bonds through radical translocation, oxidation to carbocation, and nucleophilic trapping with H2O. This remote functionalization employs fac‐[Ir(ppy)3] together with Tzo sulfonate esters and sulfonamides to facilitate the site‐selective replacement of relatively inert C? H bonds with the more synthetically useful C? OH group. The hydroxylation of a range of substrates and the methoxylation of two substrates through 1,6‐ and 1,7‐hydrogen‐atom transfer are demonstrated. In addition, a synthesis of the antidepressant fluoxetine using remote hydroxylation as a key step is presented.  相似文献   

2.
Undirected C(sp3)?H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C?H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C?H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C?H bonds over tertiary and benzylic C?H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C?H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C?H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2N,O‐NC(O)Ar) to provide carbon‐based radicals R. and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R. to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C?H amidation selectivity in the absence of directing groups.  相似文献   

3.
The C? H bond activation of small alkanes by the gaseous MgO+. cation is probed by mass spectrometric means. In addition to H‐atom abstraction from methane, the MgO+. cation reacts with ethane, propane, n‐ and iso‐butane through several pathways, which can all be assigned to the occurrence of initial C? H bond activations. Specifically, the formal C? C bond cleavages observed are assigned to C? H bond activation as the first step, followed by cleavage of a β‐C? C bond concomitant with release of the corresponding alkyl radical. Kinetic modeling of the observed product distributions reveals a high preference of MgO+. for the attack of primary C? H bonds. This feature represents a notable distinction of the main‐group metal oxide MgO+. from various transition‐metal oxide cations, which show a clear preference for the attack of secondary C? H bonds. The results of complementary theoretical calculations indicate that the C? H bond activation of larger alkanes by the MgO+. cation is subject to pronounced kinetic control.  相似文献   

4.
The functionalization of C(sp3)?H bonds streamlines chemical synthesis by allowing the use of simple molecules and providing novel synthetic disconnections. Intensive recent efforts in the development of new reactions based on C?H functionalization have led to its wider adoption across a range of research areas. This Review discusses the strengths and weaknesses of three main approaches: transition‐metal‐catalyzed C?H activation, 1,n‐hydrogen atom transfer, and transition‐metal‐catalyzed carbene/nitrene transfer, for the directed functionalization of unactivated C(sp3)?H bonds. For each strategy, the scope, the reactivity of different C?H bonds, the position of the reacting C?H bonds relative to the directing group, and stereochemical outcomes are illustrated with examples in the literature. The aim of this Review is to provide guidance for the use of C?H functionalization reactions and inspire future research in this area.  相似文献   

5.
An efficient domino cyclization method for the construction of aza‐podophyllotoxin/aza‐conidendrin derivatives has been established. Reactions of different dienes with aryl halides in the presence of a palladium catalytic system produced different kinds of podophyllotoxin derivatives through a highly regioselective C? H functionalization. Treatment of dienes with aryl halides that have electron‐withdrawing substituents on the phenyl ring created aza‐podophyllotoxin derivatives by means of the functionalization of the C? H bonds ortho to the C? halide bonds of the incoming aryl halides. The reaction of dienes with 1‐iodobenzene or aryl halides that incorporate electron‐donating groups produced aza‐conidendrin derivatives by means of the functionalization of both sp3 C? H and sp2 C? H bonds. The regioselective C? H functionalization for the formation of different pseudo‐podophyllotoxin/‐conidendrin derivatives is proven by analyses of the 1H NMR spectra of the products and selective X‐ray analyses of the structures of the products. Thus, the palladium‐catalyzed domino cyclization of 1,6‐dienes for the preparation of aza‐podophyllotoxin/aza‐conidendrin derivatives can be controlled by selectively controlling the C? H functionalization.  相似文献   

6.
The intermolecular radical functionalization of arenes with aryl and alkyl H‐phosphinate esters, as well as diphenylphosphine oxide and H‐phosphonate diesters, is described. The novel catalytic MnII/excess MnIV system is a convenient and inexpensive solution to directly convert Csp2?H into C?P bonds. The reaction can be employed to functionalize P‐stereogenic H‐phosphinates since it is stereospecific. With monosubstituted aromatics, the selectivity for para‐substitution increases in the order (RO)2P(O)H<R1P(O)(OR)H<Ph2P(O)H, a trend that may be explained by steric effects.  相似文献   

7.
Three orthogonal cascade C? H functionalization processes are described, based on ruthenium‐catalyzed C? H alkenylation. 1‐Indanones, indeno indenes, and indeno furanones were accessed through cascade pathways by using arylacetophenones as substrates under conditions of catalytic [{Ru(p‐cymene)Cl2}2] and stoichiometric Cu(OAc)2. Each transformation uses C? H functionalization methods to form C? C bonds sequentially, with the indeno furanone synthesis featuring a C? O bond formation as the terminating step. This work demonstrates the power of ruthenium‐catalyzed alkenylation as a platform reaction to develop more complex transformations, with multiple C? H functionalization steps taking place in a single operation to access novel carbocyclic structures.  相似文献   

8.
The first examples of the direct functionalization of non‐activated aryl sp2 C?H bonds with ethyl diazoacetate (N2CHCO2Et) catalyzed by Mn‐ or Fe‐based complexes in a completely selective manner are reported, with no formation of the frequently observed cycloheptatriene derivatives through competing Buchner reaction. The best catalysts are FeII or MnII complexes bearing the tetradentate pytacn ligand (pytacn= 1‐(2‐pyridylmethyl)‐4,7‐dimethyl‐1,4,7‐triazacyclononane). When using alkylbenzenes, the alkylic C(sp3)?H bonds of the substituents remained unmodified, thus the reaction being also selective toward functionalization of sp2 C?H bonds.  相似文献   

9.
An asymmetric organocatalytic direct C? H/C? H oxidative coupling reaction of N1,N3‐diphenylmalonamides has been well established by using chiral organoiodine compounds as catalysts, wherein four C? H bonds were stereoselectively functionalized to give structurally diverse spirooxindoles with high levels of enantioselectivity. More importantly, the findings indicated that chiral hypervalent organoiodine reagents can serve as alternative catalysts for the creation of enantioselective functionalization of inactive C? H bonds.  相似文献   

10.
The mechanism of [{RuCl2(p‐cymene)}2]‐catalyzed oxidative annulations of isoquinolones with alkynes was investigated in detail. The first step is an acetate‐assisted C? H bond activation process to form cyclometalated compounds. Subsequent mono‐alkyne insertion of the Ru? C bonds of the cyclometalated compounds then takes place. Finally, oxidative coupling of the C? N bond of the insertion compounds occurs to afford Ru0 sandwich complexes that undergo oxidation to regenerate the catalytically active RuII complex with the copper oxidant and release the desired dibenzo[a,g]quinolizin‐8‐one derivatives. All of the relevant intermediates were fully characterized and determined by single crystal X‐ray diffraction analysis. The [{RuCl2(p‐cymene)}2]‐catalyzed C? H bond functionalization of isoquinolones with alkynes to synthesize dibenzo[a,g]quinolizin‐8‐one derivatives through C? H/N? H activation was also demonstrated.  相似文献   

11.
The reactivity of a mononuclear high‐spin iron(III)‐alkylperoxo intermediate [FeIII(t‐BuLUrea)(OOCm)(OH2)]2+( 2 ), generated from [FeII(t‐BuLUrea)(H2O)(OTf)](OTf) ( 1 ) [t‐BuLUrea=1,1′‐(((pyridin‐2‐ylmethyl)azanediyl)bis(ethane‐2,1‐diyl))bis(3‐(tert‐butyl)urea), OTf=trifluoromethanesulfonate] with cumyl hydroperoxide (CmOOH), toward the C?H and C=C bonds of hydrocarbons is reported. 2 oxygenates the strong C?H bonds of aliphatic substrates with high chemo‐ and stereoselectivity in the presence of 2,6‐lutidine. While 2 itself is a sluggish oxidant, 2,6‐lutidine assists the heterolytic O?O bond cleavage of the metal‐bound alkylperoxo, giving rise to a reactive metal‐based oxidant. The roles of the urea groups on the supporting ligand, and of the base, in directing the selective and catalytic oxygenation of hydrocarbon substrates by 2 are discussed.  相似文献   

12.
Reaction of [GaBi3]2? with [Sm(C5Me4H)3] yielded the first protonated ternary intermetalloid clusters [Sm@Ga3?xH3?2xBi10+x]3? ( 1 ; x=0,1). The presence of the Ga? H bonds and the transfer of electrons and protons during the formation of 1 were elucidated by a combination of experimental and quantum chemical methods, thereby rationalizing the role of the solvent ethane‐1,2‐diamine as a Brønsted acid. As an organic by‐product, we observed the previously unknown octamethylfulvene ( 2 ) upon C? C coupling of (C5Me4H)?.  相似文献   

13.
Intramolecular dehydrogenative cyclization of aliphatic amides was achieved on unactivated sp3 carbon atoms by a nickel‐catalyzed C?H bond functionalization process with the assistance of a bidentate directing group. The reaction favors the C?H bonds of β‐methyl groups over the γ‐methyl or β‐methylene groups. Additionally, a predominant preference for the β‐methyl C?H bonds over the aromatic sp2 C?H bonds was observed. Moreover, this process also allows for the effective functionalization of benzylic secondary sp3 C?H bonds.  相似文献   

14.
Copper(II)-containing mordenite (CuMOR) is capable of activation of C−H bonds in C1-C3 alkanes, albeit there are remarkable differences between the functionalization of ethane and propane compared to methane. The reaction of ethane and propane with CuMOR results in the formation of ethylene and propylene, while the reaction of methane predominantly yields methanol and dimethyl ether. By combining in situ FTIR and MAS NMR spectroscopies as well as time-resolved Cu K-edge X-ray absorption spectroscopy, the reaction mechanism was derived, which differs significantly for each alkane. The formation of ethylene and propylene proceeds via oxidative dehydrogenation of the corresponding alkanes with selectivity above 95 % for ethane and above 85 % for propane. The formation of stable π-complexes of olefins with CuI sites, formed upon reduction of CuII-oxo species, protects olefins from further oxidation and/or oligomerization. This is different from methane, the activation of which proceeds via oxidative hydroxylation leading to the formation of surface methoxy species bonded to the zeolite framework. Our findings constitute one of the major steps in the direct conversion of alkanes to important commodities and open a novel research direction aiming at the selective synthesis of olefins.  相似文献   

15.
The gas‐phase reactivity of [V2O5]+ and [Nb2O5]+ towards ethane has been investigated by means of mass spectrometry and density functional theory (DFT) calculations. The two metal oxides give rise to the formation of quite different reaction products; for example, the direct room‐temperature conversions C2H6→C2H5OH or C2H6→CH3CHO are brought about solely by [V2O5]+. In distinct contrast, for the couple [Nb2O5]+/C2H6, one observes only single and double hydrogen‐atom abstraction from the hydrocarbon. DFT calculations reveal that different modes of attack in the initial phase of C?H bond activation together with quite different bond‐dissociation energies of the M?O bonds cause the rather varying reactivities of [V2O5]+ and [Nb2O5]+ towards ethane. The gas‐phase generation of acetaldehyde from ethane by bare [V2O5]+ may provide mechanistic insight in the related vanadium‐catalyzed large‐scale process.  相似文献   

16.
Regioselective incorporation of a particular functional group into aliphatic sites by direct activation of unreactive C?H bonds is of great synthetic value. Despite advances in radical‐mediated functionalization of C(sp3)?H bonds by a hydrogen‐atom transfer process, the site‐selective vinylation of remote C(sp3)?H bonds still remains underexplored. Reported herein is a new protocol for the regioselective vinylation of unactivated C(sp3)?H bonds. The remote C(sp3)?H activation is promoted by a C‐centered radical instead of the commonly used N and O radicals. The reaction possesses high product diversity and synthetic efficiency, furnishing a plethora of synthetically valuable E alkenes bearing tri‐/di‐/mono‐fluoromethyl and perfluoroalkyl groups.  相似文献   

17.
Direct catalytic C? H bond functionalization is a key challenge in synthetic chemistry, with many popular C? H activation methodologies involving precious‐metal catalysts. In recent years, iron catalysts have emerged as a possible alternative to the more common precious‐metal catalysts, owing to its high abundance, low cost, and low toxicity. However, iron catalysts are plagued by two key factors: the ligand cost and the low turnover numbers (TONs) typically achieved. In this work, two approaches are presented to functionalize the popular N1,N2‐dimethyl‐N1,N2‐bis(pyridin‐2‐ylmethyl)ethane‐1,2‐diamine (BPMEN) ligand, so that it can be supported on porous silica or polymer resin supports. Four new catalysts are prepared and evaluated in an array of catalytic C? H functionalization reactions by using cyclohexane, cyclohexene, cyclooctane, adamantane, benzyl alcohol, and cumene with aqueous hydrogen peroxide. Catalyst recovery and recycling is demonstrated by using supported catalysts, which allows for a modest increase in the TON achieved with these catalysts.  相似文献   

18.
A general and practical strategy for remote site‐selective functionalization of unactivated aliphatic C?H bonds in various amides by radical chemistry is introduced. C?H bond functionalization is achieved by using the readily installed N‐allylsulfonyl moiety as an N‐radical precursor. The in situ generated N‐radical engages in intramolecular 1,5‐hydrogen atom transfer to generate a translocated C radical which is subsequently trapped with various sulfone reagents to afford the corresponding C?H functionalized amides. The generality of the approach is documented by the successful remote C?N3, C?Cl, C?Br, C?SCF3, C?SPh, and C?C bond formation. Unactivated tertiary and secondary C?H bonds, as well as activated primary C?H bonds, can be readily functionalized by this method.  相似文献   

19.
The intramolecular dehydrogenative amidation of aliphatic amides, directed by a bidentate ligand, was developed using a copper‐catalyzed sp3 C? H bond functionalization process. The reaction favors predominantly the C? H bonds of β‐methyl groups over the unactivated methylene C? H bonds. Moreover, a preference for activating sp3 C? H bonds of β‐methyl groups, via a five‐membered ring intermediate, over the aromatic sp2 C? H bonds was also observed in the cyclometalation step. Additionally, sp3 C? H bonds of unactivated secondary sp3 C? H bonds could be functionalized by favoring the ring carbon atoms over the linear carbon atoms.  相似文献   

20.
Aluminum–vanadium bimetallic oxide cluster anions (BMOCAs) have been prepared by laser ablation and reacted with ethane and n‐butane in a fast‐flow reactor. A time‐of‐flight mass spectrometer was used to detect the cluster distribution before and after the reactions. The observation of hydrogen‐containing products AlVO5H? and AlxV4?xO11?xH? (x=1–3) strongly suggests that AlVO5? and AlxV4?xO11?x? (x=1–3) can react with ethane and n‐butane by means of an oxidative dehydrogenation process at room temperature. Density functional theory studies have been carried out to investigate the structural, bonding, electronic, and reactive properties of these BMOCAs. Terminal‐oxygen‐centered radicals (Ot.) were found in all of the reactive clusters, and the Ot. atoms, which prefer to be bonded with Al rather than V atoms, are the active sites of these clusters. All the hydrogen‐abstraction reactions are favorable both thermodynamically and kinetically. To the best of our knowledge, this is the first example of hydrogen‐atom abstraction by BMOCAs and may shed light on understanding the mechanisms of C? H activation on the surface of alumina‐supported vanadia catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号