首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Production of hydrogen by electrochemical water splitting has been hindered by the high cost of precious metal catalysts, such as Pt, for the hydrogen evolution reaction (HER). In this work, novel hierarchical β‐Mo2C nanotubes constructed from porous nanosheets have been fabricated and investigated as a high‐performance and low‐cost electrocatalyst for HER. An unusual template‐engaged strategy has been utilized to controllably synthesize Mo‐polydopamine nanotubes, which are further converted into hierarchical β‐Mo2C nanotubes by direct carburization at high temperature. Benefitting from several structural advantages including ultrafine primary nanocrystallites, large exposed surface, fast charge transfer, and unique tubular structure, the as‐prepared hierarchical β‐Mo2C nanotubes exhibit excellent electrocatalytic performance for HER with small overpotential in both acidic and basic conditions, as well as remarkable stability.  相似文献   

2.
Both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are crucial to water splitting, but require alternative active sites. Now, a general π‐electron‐assisted strategy to anchor single‐atom sites (M=Ir, Pt, Ru, Pd, Fe, Ni) on a heterogeneous support is reported. The M atoms can simultaneously anchor on two distinct domains of the hybrid support, four‐fold N/C atoms (M@NC), and centers of Co octahedra (M@Co), which are expected to serve as bifunctional electrocatalysts towards the HER and the OER. The Ir catalyst exhibits the best water‐splitting performance, showing a low applied potential of 1.603 V to achieve 10 mA cm?2 in 1.0 m KOH solution with cycling over 5 h. DFT calculations indicate that the Ir@Co (Ir) sites can accelerate the OER, while the Ir@NC3 sites are responsible for the enhanced HER, clarifying the unprecedented performance of this bifunctional catalyst towards full water splitting.  相似文献   

3.
Channel‐rich RuCu snowflake‐like nanosheets (NSs) composed of crystallized Ru and amorphous Cu were used as efficient electrocatalysts for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting in pH‐universal electrolytes. The optimized RuCu NSs/C‐350 °C and RuCu NSs/C‐250 °C show attractive activities of OER and HER with low overpotentials and small Tafel slopes, respectively. When applied to overall water splitting, the optimized RuCu NSs/C can reach 10 mA cm?2 at cell voltages of only 1.49, 1.55, 1.49 and 1.50 V in 1 m KOH, 0.1 m KOH, 0.5 m H2SO4 and 0.05 m H2SO4, respectively, much lower than those of commercial Ir/C∥Pt/C. The optimized electrolyzer exhibits superior durability with small potential change after up to 45 h in 1 m KOH, showing a class of efficient functional electrocatalysts for overall water splitting.  相似文献   

4.
Molybdenum‐based materials have been considered as alternative catalysts to noble metals, such as platinum, for the hydrogen evolution reaction (HER). We have synthesized four binary bulk molybdenum borides Mo2B, α‐MoB, β‐MoB, and MoB2 by arc‐melting. All four phases were tested for their electrocatalytic activity (linear sweep voltammetry) and stability (cyclic voltammetry) with respect to the HER in acidic conditions. Three of these phases were studied for their HER activity and by X‐ray photoelectron spectroscopy (XPS) for the first time; MoB2 and β‐MoB show excellent activity in the same range as the recently reported α‐MoB and β‐Mo2C phases, while the molybdenum richest phase Mo2B show significantly lower HER activity, indicating a strong boron‐dependency of these borides for the HER. In addition, MoB2 and β‐MoB show long‐term cycle stability in acidic solution.  相似文献   

5.
The highly efficient electrochemical hydrogen evolution reaction (HER) provides a promising pathway to resolve energy and environment problems. An electrocatalyst was designed with single Mo atoms (Mo‐SAs) supported on N‐doped carbon having outstanding HER performance. The structure of the catalyst was probed by aberration‐corrected scanning transmission electron microscopy (AC‐STEM) and X‐ray absorption fine structure (XAFS) spectroscopy, indicating the formation of Mo‐SAs anchored with one nitrogen atom and two carbon atoms (Mo1N1C2). Importantly, the Mo1N1C2 catalyst displayed much more excellent activity compared with Mo2C and MoN, and better stability than commercial Pt/C. Density functional theory (DFT) calculation revealed that the unique structure of Mo1N1C2 moiety played a crucial effect to improve the HER performance. This work opens up new opportunities for the preparation and application of highly active and stable Mo‐based HER catalysts.  相似文献   

6.
To achieve sustainable production of H2 fuel through water splitting, low‐cost electrocatalysts for the hydrogen‐evolution reaction (HER) and the oxygen‐evolution reaction (OER) are required to replace Pt and IrO2 catalysts. Herein, for the first time, we present the interface engineering of novel MoS2/Ni3S2 heterostructures, in which abundant interfaces are formed. For OER, such MoS2/Ni3S2 heterostructures show an extremely low overpotential of ca. 218 mV at 10 mA cm?2, which is superior to that of the state‐of‐the‐art OER electrocatalysts. Using MoS2/Ni3S2 heterostructures as bifunctional electrocatalysts, an alkali electrolyzer delivers a current density of 10 mA cm?2 at a very low cell voltage of ca. 1.56 V. In combination with DFT calculations, this study demonstrates that the constructed interfaces synergistically favor the chemisorption of hydrogen and oxygen‐containing intermediates, thus accelerating the overall electrochemical water splitting.  相似文献   

7.
With the environmental pollution and non‐renewable fossil fuels, it is imperative to develop eco‐friendly, renewable, and highly efficient electrocatalysts for sustainable energy. Herein, a simple electrospinning process used to synthesis Mo2C‐embedded multichannel hollow carbon nanofibers (Mo2C‐MCNFs) and followed by the pyrolysis process. As prepared lotus root‐like nanoarchitecture could offer rich porosity and facilitate the electrolyte infiltration, the Mo2C‐MCNFs delivered favourable catalytic activity for HER and OER. The resultant catalysts exhibit low overpotentials of 114 mV and 320 mV at a current density of 10 mA cm?2 for HER and OER, respectively. Furthermore, using the Mo2C‐MCNFs catalysts as a bifunctional electrode toward overall water splitting, which only needs a small cell voltage of 1.68 V to afford a current density of 10 mA cm?2 in the home‐made alkaline electrolyzer. This interesting work presents a simple and effective strategy to further fabricating tunable nanostructures for energy‐related applications.  相似文献   

8.
Bifunctional electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline electrolyte may improve the efficiency of overall water splitting. Nickel cobaltite (NiCo2O4) has been considered a promising electrode material for the OER. However, NiCo2O4 that can be used as an electrocatalyst in HER has not been studied yet. Herein, we report self‐assembled hierarchical NiCo2O4 hollow microcuboids for overall water splitting including both the HER and OER reactions. The NiCo2O4 electrode shows excellent activity toward overall water splitting, with 10 mA cm?2 water‐splitting current reached by applying just 1.65 V and 20 mA cm?2 by applying just 1.74 V across the two electrodes. The synthesis of NiCo2O4 microflowers confirms the importance of structural features for high‐performance overall water splitting.  相似文献   

9.
Transition‐metal oxides as electrocatalysts for the oxygen evolution reaction (OER) provide a promising route to face the energy and environmental crisis issues. Although palmeirite oxide A2Mo3O8 as OER catalyst has been explored, the correlation between its active sites (tetrahedral or octahedral) and OER performance has been elusive. Now, magnetic Co2Mo3O8@NC‐800 composed of highly crystallized Co2Mo3O8 nanosheets and ultrathin N‐rich carbon layer is shown to be an efficient OER catalyst. The catalyst exhibits favorable performance with an overpotential of 331 mV@10 mA cm?2 and 422 mV@40 mA cm?2, and a full water‐splitting electrolyzer with it as anode catalyst shows a cell voltage of 1.67 V@10 mA cm?2 in alkaline. Combined HAADFSTEM, magnetic, and computational results show that factors influencing the OER performance can be attributed to the tetrahedral Co sites (high spin, t23e4), which improve the OER kinetics of rate‐determining step to form *OOH.  相似文献   

10.
In our efforts to obtain electrocatalysts with improved activity for water splitting, meticulous design and synthesis of the active sites of the electrocatalysts and deciphering how exactly they catalyze the reaction are vitally necessary. Herein, we report a one‐step facile synthesis of a novel precious‐metal‐free hydrogen‐evolution nanoelectrocatalyst, dubbed Mo2C@NC that is composed of ultrasmall molybdenum carbide (Mo2C) nanoparticles embedded within nitrogen‐rich carbon (NC) nanolayers. The Mo2C@NC hybrid nanoelectrocatalyst shows remarkable catalytic activity, has great durability, and gives about 100 % Faradaic yield toward the hydrogen‐evolution reaction (HER) over a wide pH range (pH 0–14). Theoretical calculations show that the Mo2C and N dopants in the material synergistically co‐activate adjacent C atoms on the carbon nanolayers, creating superactive nonmetallic catalytic sites for HER that are more active than those in the constituents.  相似文献   

11.
One of the challenges to realize large‐scale water splitting is the lack of active and low‐cost electrocatalysts for its two half reactions: H2 and O2 evolution reactions (HER and OER). Herein, we report that cobalt‐phosphorous‐derived films (Co‐P) can act as bifunctional catalysts for overall water splitting. The as‐prepared Co‐P films exhibited remarkable catalytic performance for both HER and OER in alkaline media, with a current density of 10 mA cm?2 at overpotentials of ?94 mV for HER and 345 mV for OER and Tafel slopes of 42 and 47 mV/dec, respectively. They can be employed as catalysts on both anode and cathode for overall water splitting with 100 % Faradaic efficiency, rivalling the integrated performance of Pt and IrO2. The major composition of the as‐prepared and post‐HER films are metallic cobalt and cobalt phosphide, which partially evolved to cobalt oxide during OER.  相似文献   

12.
Both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are crucial to water splitting, but require alternative active sites. Now, a general π‐electron‐assisted strategy to anchor single‐atom sites (M=Ir, Pt, Ru, Pd, Fe, Ni) on a heterogeneous support is reported. The M atoms can simultaneously anchor on two distinct domains of the hybrid support, four‐fold N/C atoms (M@NC), and centers of Co octahedra (M@Co), which are expected to serve as bifunctional electrocatalysts towards the HER and the OER. The Ir catalyst exhibits the best water‐splitting performance, showing a low applied potential of 1.603 V to achieve 10 mA cm?2 in 1.0 m KOH solution with cycling over 5 h. DFT calculations indicate that the Ir@Co (Ir) sites can accelerate the OER, while the Ir@NC3 sites are responsible for the enhanced HER, clarifying the unprecedented performance of this bifunctional catalyst towards full water splitting.  相似文献   

13.
Designing cost‐effective and efficient electrocatalysts plays a pivotal role in advancing the development of electrochemical water splitting for hydrogen generation. Herein, multifunctional active‐center‐transferable heterostructured electrocatalysts, platinum/lithium cobalt oxide (Pt/LiCoO2) composites with Pt nanoparticles (Pt NPs) anchored on LiCoO2 nanosheets, are designed towards highly efficient water splitting. In this electrocatalyst system, the active center can be alternatively switched between Pt species and LiCoO2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Specifically, Pt species are the active centers and LiCoO2 acts as the co‐catalyst for HER, whereas the active center transfers to LiCoO2 and Pt turns into the co‐catalyst for OER. The unique architecture of Pt/LiCoO2 heterostructure provides abundant interfaces with favorable electronic structure and coordination environment towards optimal adsorption behavior of reaction intermediates. The 30 % Pt/LiCoO2 heterostructured electrocatalyst delivers low overpotentials of 61 and 285 mV to achieve 10 mA cm?2 for HER and OER in alkaline medium, respectively.  相似文献   

14.
The fabrication of metal‐supported hybrid structures with enhanced properties typically requires external energy input, such as pyrolysis, photolysis, and electrodeposition. In this study, silver‐nanoparticle‐decorated transition‐metal hydroxide (TMH) composites were synthesized by an approach based on a spontaneous redox reaction (SRR) at room temperature. The SRR between silver ions and TMH provides a simple and facile route to establish effective and stable heterostructures that can enhance the oxygen evolution reaction (OER) activity. Ag@Co(OH)x grown on carbon cloth exhibits outstanding OER activity and durability, even superior to IrO2 and many previously reported OER electrocatalysts. Experimental and theoretical analysis demonstrates that the strong electronic interaction between Ag and Co(OH)2 activates the silver clusters as catalytically OER active sites, effectively optimizing the binding energies with reacted intermediates and facilitating the OER kinetics.  相似文献   

15.
Cobalt‐based nanomaterials have been intensively explored as promising noble‐metal‐free oxygen evolution reaction (OER) electrocatalysts. Herein, we report phase‐selective syntheses of novel hierarchical CoTe2 and CoTe nanofleeces for efficient OER catalysts. The CoTe2 nanofleeces exhibited excellent electrocatalytic activity and stablity for OER in alkaline media. The CoTe2 catalyst exhibited superior OER activity compared to the CoTe catalyst, which is comparable to the state‐of‐the‐art RuO2 catalyst. Density functional theory calculations showed that the binding strength and lateral interaction of the reaction intermediates on CoTe2 and CoTe are essential for determining the overpotential required under different conditions. This study provides valuable insights for the rational design of noble‐metal‐free OER catalysts with high performance and low cost by use of Co‐based chalcogenides.  相似文献   

16.
Herein in we report the unprecedented catalytic activity of an iron‐based oxygen‐deficient perovskite for the oxygen‐evolution reaction (OER). The systematic trends in OER activity as a function of composition, defect‐order, and electrical conductivity have been demonstrated, leading to a methodical increase in OER catalytic activity: Ca2Fe2O6?δ<CaSrFe2O6?δ<Sr2Fe2O6?δ. Sr2Fe2O6?δ also has the highest electrical conductivity and a unique type of defect‐order. In conventional experiments using glassy carbon electrode, Sr2Fe2O6?δ shows better OER activity than the current state of the art catalysts, Ba0.5Sr0.5Co0.8Fe0.2O3?δ and RuO2. It also offers a high intrinsic electrical conductivity, which allows it to act as a catalyst without the need for glassy carbon electrode or carbon powder. Pure disks of this material exhibit an outstanding activity for OER, without any additives or need for electrode preparation.  相似文献   

17.
Highly active, stable, and cheap Pt‐free catalysts for the hydrogen evolution reaction (HER) are under increasing demand for future energy conversion systems. However, developing HER electrocatalysts with Pt‐like activity that can function at all pH values still remains as a great challenge. Herein, based on our theoretical predictions, we design and synthesize a novel N,P dual‐doped carbon‐encapsulated ruthenium diphosphide (RuP2@NPC) nanoparticle electrocatalyst for HER. Electrochemical tests reveal that, compared with the Pt/C catalyst, RuP2@NPC not only has Pt‐like HER activity with small overpotentials at 10 mA cm−2 (38 mV in 0.5 m H2SO4, 57 mV in 1.0 m PBS and 52 mV in 1.0 m KOH), but demonstrates superior stability at all pH values, as well as 100 % Faradaic yields. Therefore, this work adds to the growing family of transition‐metal phosphides/heteroatom‐doped carbon heterostructures with advanced performance in HER.  相似文献   

18.
Developing highly active, stable and robust electrocatalysts based on earth‐abundant elements for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is important for many renewable energy conversion processes. Herein, NixCo3‐xO4 nanoneedle arrays grown on 3D porous nickel foam (NF) was synthesized as a bifunctional electrocatalyst with OER and HER activity for full water splitting. Benefiting from the advantageous structure, the composite exhibits superior OER activity with an overpotential of 320 mV achieving the current density of 10 mA cm?2. An exceptional HER activity is also acquired with an overpotential of 170 mV at the current density of 10 mA cm?2. Furthermore, the catalyst also shows the superior activity and stability for 20 h when used in the overall water splitting cell. Thus, the hierarchical 3D structure composed of the 1D nanoneedle structure in NixCo3‐xO4/NF represents an avenue to design and develop highly active and bifunctional electrocatalysts for promising energy conversion.  相似文献   

19.
There are few methods yielding oxynitride crystals with defined shape, yet shape‐controlled crystals often give enhanced photoactivity. Herein, single‐crystalline SrTaO2N nanoplates and polyhedra are achieved selectively. Central to these synthetic advances is the crystallization pathways used, in which single‐crystalline SrTaO2N nanoplates form by topotactic nitridation of aerosol‐prepared Sr2Ta2O7 nanoplates and SrTaO2N polyhedra form by flux‐assisted nitridation of the nanoplates. Evaluation of these materials for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) showed improved performance for the SrTaO2N nanoplates, with a record apparent quantum efficiency (AQE) of 6.1 % for OER compared to the polyhedra (AQE: 1.6 %) and SrTaO2N polycrystals (AQE: 0.6 %). The enhanced performance from the nanoplates arises from their morphology and lower defect density. These results highlight the importance of developing new synthetic routes to high quality oxynitrides.  相似文献   

20.
Electrochemical water splitting requires efficient, low‐cost water oxidation catalysts to accelerate the sluggish kinetics of the water oxidation reaction. A rapid photocorrosion method is now used to synthesize the homogeneous amorphous nanocages of Cu‐Ni‐Fe hydr(oxy)oxide as a highly efficient electrocatalyst for the oxygen evolution reaction (OER). The as‐fabricated product exhibits a low overpotential of 224 mV on a glassy carbon electrode at 10 mA cm?2 (even lower down to 181 mV when supported on Ni foam) with a Tafel slope of 44 mV dec?1 for OER in an alkaline solution. The obtained catalyst shows an extraordinarily large mass activity of 1464.5 A g?1 at overpotential of 300 mV, which is the highest mass activity for OER. This synthetic strategy may open a brand new pathway to prepare copper‐based ternary amorphous nanocages for greatly enhanced oxygen evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号