首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Copper doped ceria porous nanostructures with a tunable BET surface area were prepared using an efficient and general metal–organic-framework-driven, self-template route. The XRD, SEM and TEM results indicate that Cu2+ was successfully substituted into the CeO2 lattice and well dispersed in the CeO2:Cu2+ nanocrystals. The CeO2:Cu2+ nanocrystals exhibit a superior bifunctional catalytic performance for CO oxidation and selective catalytic reduction of NO. Interestingly, CO oxidation reactivity over the CeO2:Cu2+ nanocrystals was found to be dependent on the Cu2+ dopants and BET surface area. By tuning the content of Cu2+ and BET surface area through choosing different organic ligands, the 100% conversion temperature of CO over CeO2:Cu2+ nanocrystals obtained from thermolysis of CeCu–BPDC nanocrystals can be decreased to 110 °C. The porous nanomaterials show a high CO conversion rate without any loss in activity even after five cycles. Furthermore, the activity of the catalysts for NO reduction increased with the increase of BET surface, which is in accordance with the results of CO oxidation.  相似文献   

2.
Favoring the CO2 reduction reaction (CO2RR) over the hydrogen evolution reaction and controlling the selectivity towards multicarbon products are currently major scientific challenges in sustainable energy research. It is known that the morphology of the catalyst can modulate catalytic activity and selectivity, yet this remains a relatively underexplored area in electrochemical CO2 reduction. Here, we exploit the material tunability afforded by colloidal chemistry to establish unambiguous structure/property relations between Cu nanocrystals and their behavior as electrocatalysts for CO2 reduction. Our study reveals a non‐monotonic size‐dependence of the selectivity in cube‐shaped copper nanocrystals. Among 24 nm, 44 nm and 63 nm cubes tested, the cubes with 44 nm edge length exhibited the highest selectivity towards CO2RR (80 %) and faradaic efficiency for ethylene (41 %). Statistical analysis of the surface atom density suggests the key role played by edge sites in CO2RR.  相似文献   

3.
Porous hematite (α-Fe2O3) nanorods with the diameter of 20-40 nm and the length of 80-300 nm were synthesized by a simple surfactant-assisted method in the presence of cetyltrimethylammonium bromide (CTAB).The α-Fe2O3 nanorods possess a mesostructure with a pore size distribution in the range of 5-12 nm and high surface area,exhibiting high catalytic activity for CO oxidation.CuO nanocrystals were loaded on the surface of porous α-Fe2O3 nanorods by a deposition-precipitation method,and the catalysts exhibited superior activity for catalytic oxidation of CO,as compared with commercial α-Fe2O3 powders supported CuO catalyst.The enhanced catalytic activity was attributed to the strong interaction between the CuO nanocrystals and the support of porous α-Fe2O3 nanorods.  相似文献   

4.
The hydrogenolysis of [Cu2{(iPrN)2(CCH3)}2] in the presence of hexadecylamine (HDA) or tetradecylphosphonic acid (TDPA) in toluene leads to 6–9 nm copper nanocrystals. Solution NMR spectroscopy has been used to describe the nanoparticle surface chemistry during the dynamic phenomenon of air oxidation. The ligands are organized as multilayered shells around the nanoparticles. The shell of ligands is controlled by both their intermolecular interactions and their bonding strength on the nanocrystals. Under ambient atmosphere, the oxidation rate of colloidal copper nanocrystals closely relies on the chemical nature of the employed ligands (base or acid). Primary amine molecules behave as soft ligands for Cu atoms, but are even more strongly coordinated on surface CuI sites, thus allowing a very efficient corrosion protection of the copper core. On the contrary, the TDPA ligands lead to a rapid oxidation rate of Cu nanoparticles and eventually to the re‐dissolution of CuII species at the expense of the nanocrystals.  相似文献   

5.
We report the highly facet‐dependent catalytic activity of Cu2O nanocubes, octahedra, and rhombic dodecahedra for the multicomponent direct synthesis of 1,2,3‐triazoles from the reaction of alkynes, organic halides, and NaN3. The catalytic activities of clean surfactant‐removed Cu2O nanocrystals with the same total surface area were compared. Rhombic dodecahedral Cu2O nanocrystals bounded by {110} facets were much more catalytically active than Cu2O octahedra exposing {111} facets, whereas Cu2O nanocubes displayed the slowest catalytic activity. The superior catalytic activity of Cu2O rhombic dodecahedra is attributed to the fully exposed surface Cu atoms on the {110} facet. A large series of 1,4‐disubstituted 1,2,3‐triazoles have been synthesized in excellent yields with high regioselectivity under green conditions by using these rhombic dodecahedral Cu2O catalysts, including the synthesis of rufinamide, an antiepileptic drug, demonstrating the potential of these nanocrystals as promising heterogeneous catalysts for other important coupling reactions.  相似文献   

6.
Herein, we report a facile surfactant‐assisted solvothermal synthetic method to prepare nearly monodisperse spherical CeO2 nanocrystals. A good control of the size of CeO2 nanocrystals in the range of 100–500 nm was achieved by simply varying the synthetic parameters such as reaction time, volume ratio of ethanol to water (R), molar ratio of PVP, and concentration of Ce(NO3)3?6 H2O in solution. A possible mechanism for the growth of spherical CeO2 nanocrystals is proposed. The obtained CeO2 nanocrystals with a surface area of up to 47 m2g?1 were then employed as a catalyst support. By loading Au‐Pd nanoparticles (about 3 wt. %) onto the CeO2 support, an Au‐Pd/CeO2 catalyst was prepared that exhibited high catalytic activity for HCHO oxidation. At the low temperature of 50 °C, the percentage of HCHO conversion was 100 %, suggesting potential applications in preferential oxidation and other catalytic reactions. These Au‐Pd/CeO2 catalysts may also find applications in indoor formaldehyde decontamination and industrial catalysis. The facile solvothermal method can be extended to the preparation of other metal oxide nanocrystals and provides guidance for size‐ and morphology‐controlled synthesis.  相似文献   

7.
CuCeO catalysts prepared by a hydrothermal method with subsequent calcination are tested for the catalytic oxidation of CO. This synthesis method leads to a homogeneous dispersion of Cu2O, CuO, and CeO2 in the catalysts. The composition of the catalysts is determined by the molar ratio of the metals, the hydrothermal process, and calcination temperature and influences the catalytic performance. The catalyst containing Cu2O exhibits high catalytic activity with almost 100 % CO conversion at 105 °C and shows excellent stability with the conversion ratio not decreasing after four months of storage.  相似文献   

8.
Unraveling the complex interaction between catalysts and reactants under operando conditions is a key step toward gaining fundamental insight in catalysis. We report the evolution of the structure and chemical composition of size-selected micellar Pt nanoparticles (~1 nm) supported on nanocrystalline γ-Al(2)O(3) during the catalytic oxidation of 2-propanol using X-ray absorption fine-structure spectroscopy. Platinum oxides were found to be the active species for the partial oxidation of 2-propanol (<140 °C), while the complete oxidation (>140 °C) is initially catalyzed by oxygen-covered metallic Pt nanoparticles, which were found to regrow a thin surface oxide layer above 200 °C. The intermediate reaction regime, where the partial and complete oxidation pathways coexist, is characterized by the decomposition of the Pt oxide species due to the production of reducing intermediates and the blocking of O(2) adsorption sites on the nanoparticle surface. The high catalytic activity and low onset reaction temperature displayed by our small Pt particles for the oxidation of 2-propanol is attributed to the large amount of edge and corner sites available, which facilitate the formation of reactive surface oxides. Our findings highlight the decisive role of the nanoparticle structure and chemical state in oxidation catalytic reactions.  相似文献   

9.
纪红兵  王乐夫 《中国化学》2002,20(10):944-950
Spinel catalyst MnFe1.8Cu0.15Ru0.05O4 with partcle size of about 42nm is an effective heterogeneous catalyst for the oxidation of benzylic alcobols.The substitution of Fe for Cu improves its catalytic activity.Based on the characterization of BET,XPS and EXAFS,two factors influencing the structure and texture of the catalyst cauesd by the substitution of Cu for Fe may be assumed:physical factor responsible for the increasing of surface area;chemical factor responsible for the transformation of Ru-O bonds to Ru=O boods.β-Elimination is considered to be an important step in the reaction.  相似文献   

10.
张鑫  徐柏庆 《化学学报》2005,63(1):86-90
从同一ZrO(OH)2出发制备了三种不同尺寸的ZrO2纳米颗粒(ZrO2-CP: 40~200 nm, ZrO2-AN: 18~25 nm, ZrO2-AD: 10~15 nm), 采用沉积-沉淀方法制备了相应的Au/ZrO2催化剂. 用XRD, XRF, TEM和低温N2吸附对ZrO2和Au/ZrO2进行了表征. XRD和TEM分析表明Au/ZrO2样品中Au粒子的平均尺寸为4~5 nm, 而ZrO2的晶相和颗粒大小没有因为“负载”Au粒子而发生变化. CO催化氧化反应的结果表明, Au/ZrO2催化活性随着ZrO2纳米粒子尺寸的减小活性明显增加. TEM/HRTEM结果表明, Au/ZrO2催化剂中Au粒子与ZrO2颗粒接触界面随ZrO2颗粒尺寸的减小而明显增加, 这很可能是含有更小尺寸ZrO2纳米粒子的Au/ZrO2催化剂具有更高催化活性的重要原因.  相似文献   

11.
We have studied the catalytic activity of copper-containing zeolite catalysts based on erionite (ERI) in oxidation of CO. We have established that the activity of Cu-ERI systems is due to isolated coordination unsaturated Cu2+ cations which are stabilized in the catalyst on sites with strong tetragonal distortion and are reduced to Cu+ during catalysis. According to X-ray photoelectron spectroscopy (XPS), diffuse reflection electronic spectra, and temperature programmed reduction by hydrogen (TPR-H2) spectra, activity differences between 3% Cu-ERI catalysts obtained from different precursors are determined by the different numbers of Cu2+ cations capable of being reduced during the reaction at T < 400 °C: the higher the content of such cations in the samples, the higher the activity of the Cu-ERI systems. __________ Translated from Teoreticheskaya i Eksperimental'naya Khimiya, Vol. 41, No. 5, pp. 317–322, September–October, 2005.  相似文献   

12.
The design for non-Cu-based catalysts with the function of producing C2+ products requires systematic knowledge of the intrinsic connection between the surface state as well as the catalytic activity and selectivity. In this work, photochemical in situ spectral surface characterization techniques combined with the first principle calculations (DFT) were applied to investigate the relationships between the composition of surface states, coordinated motifs, and catalytic selectivity of a titanium oxynitride catalyst. When the catalyst mediates CO2 photoreduction, C2 product selectivity is positively correlated with the surface Ti2+/Ti3+ ratio and the surface oxidation state is regulated and controlled by coordinated motifs of N−Ti-O/V[O], which can reduce the potential dimerization energy barriers of *CO−CO* and promote spontaneous formation of the subsequent *CO−CH2* intermediate. This phenomenon provides a new perspective for the design of heterogeneous catalysts for photoreduction of CO2 into useful products.  相似文献   

13.
Carbon monoxide (CO) is a very poisonous gas present in the atmosphere. It has significant effects on human beings, animals, plants and the climate. Automobile vehicle exhaust contributes 64% of the CO pollution in urban areas. To control this exhaust pollution, various types of catalysts in catalytic converters have been investigated. Increasing costs of noble metals as a catalyst in automobile vehicles motivates the investigation of material that can be substituted for noble metals. Among the non-noble metals, copper (Cu) is found to be the most capable and highly active catalyst for CO oxidation, compared to precious metal catalysts. Lower cost, easy availability and advance preparation conditions with stabilizers, promoters and so on, make Cu a good choice as an auto exhaust purification catalyst. The oxidation of CO proceeds very quickly over Cu°, followed by Cu+ and Cu2+. The Cu2O catalyst is more active in an O2-rich atmosphere than in O2-lean conditions. The reduced species of copper (Cu0, Cu+) are essential for better CO oxidation but smaller Cu particles could be less active than the higher ones. There is a great deal of research available on the Cu catalyst for CO oxidation, but there is a gap in the literature for a review article individually applied to the Cu catalyst for CO oxidation. To fill this gap, the present review updates information on Cu catalysts in the purification of exhaust gases.  相似文献   

14.
The preferential oxidation (PROX, CO + H2 + O2 → CO2 + H2O) of the CO reaction in an H2 stream is the simplest and most cost-effective method to remove CO gas to less than 10 ppm in reformed fuel gas. We study the mechanism of PROX of the CO reaction in the H2 stream catalyzed by Cu n Ni (n = 3-12) clusters using a density functional theory (DFT) calculation to investigate bimetallic effects on the catalytic activation. Our results indicate that the Cu12Ni cluster is the most efficient catalyst for H2 dissociation and the Cu6Ni cluster is the most efficient catalyst for CO-PROX in excess hydrogen among Cu n Ni (n = 3-12) clusters. To gain insight into the adsorption and dissociation of the H2 molecule effect in the catalytic activity over the Cu12Ni cluster and the potential energy surfaces about PROX of CO oxidation on the Cu6Ni cluster, the nature of the interaction between the adsorbate and substrate is analyzed by detailed electron local densities of states (LDOS) as well as molecular structures.  相似文献   

15.
《中国化学快报》2023,34(7):107777
CO oxidation is a benchmark in heterogeneous catalysis for evaluation of redox catalysts due to its practical relevance in many applications and the fundamental problems associated with its very high activity at low temperatures. Among which, Co3O4 is one of the most active non-precious metal catalysts. Exposed crystal planes and cobalt sites are considered to be important for its high catalytic activity. Herein, we demonstrate an enhanced CO oxidation activity by a defect-rich mesoporous Co3O4 that prepared by a designed dual-template method. Two different kinds of silicas are used as hard-templates at the same time, resulting in a defect-rich mesoporous Co3O4 with a surface area as high as 169 m2/g. This catalyst exhibited a very high catalytic activity for low temperature CO oxidation with a light-off temperature at −73 oC under the space velocity of 80,000 mL h-1 gcat-1. Further studies reveal that the high surface area promotes the lattice oxygen mobility, surface rich of Co2+ species and active oxygen species are crucial for the high catalytic activity. Moreover, the dual-template approach paves a way towards the design and construction of high-surface-area mesoporous metal oxides for various applications.  相似文献   

16.
In order to improve the CO catalytic oxidation performance of a Pt/TiO2 catalyst, a series of Pt/TiO2 catalysts were prepared via an impregnation method in this study, and various characterization methods were used to explore the effect of TiO2 calcination pretreatment on the CO catalytic oxidation performance of the catalysts. The results revealed that Pt/TiO2 (700 °C) prepared by TiO2 after calcination pretreatment at 700 °C exhibits a superior CO oxidation activity at low temperatures. After calcination pretreatment, the catalyst exhibited a suitable specific surface area and pore structure, which is beneficial to the diffusion of reactants and reaction products. At the same time, the proportion of adsorbed oxygen on the catalyst surface was increased, which promoted the oxidation of CO. After calcination pretreatment, the adsorption capacity of the catalyst for CO and CO2 decreased, which was beneficial for the simultaneous inhibition of the CO self-poisoning of Pt sites. In addition, the Pt species exhibited a higher degree of dispersion and a smaller particle size, thereby increasing the CO oxidation activity of the Pt/TiO2 (700 °C) catalyst.  相似文献   

17.
18.
Monodispersed cubic platinum (Pt) nanocrystals with an average size of approximately 10 nm were prepared by a reduction method with cetyltrimethylammonium bromide (CTAB) serving as steric stabilizer. The resulting Pt nanocrystals exhibit a peroxidase-like activity and catalyze the H2O2-mediated oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to produce two colored products with high catalytic activity. The color-generating activity of this system may be influenced by several factors, and we examined several factors to optimize this colorimetric system including buffer types, pH, and concentrations of both H2O2 and Pt nanocrystals. The effect of agglomeration of Pt nanocrystals was also investigated, and we find that agglomeration of Pt nanocrystals in aqueous solution distinctly affects Pt nanocrystals catalytic activity. We attribute the catalytic activity of Pt nanocrystals to their acceleration of the electron-transfer process and the consequent facilitation of radical generation.  相似文献   

19.
Catalytic oxidation has been recognized as one of the most efficient and promising techniques for the abatement of CO and volatile organic compounds. In the present work, the CO oxidation mechanism on perfect Cu2O (111) surface was investigated by using density functional theory (DFT) calculations with the periodic surface model. The unsaturated singly coordinated Cu+ site of Cu2O (111) surface could effectively adsorb gaseous CO molecule with a strong adsorption energy of −1.558 eV. The adsorbed O on Cu2O (111) surface is very active toward CO oxidation with only 0.269 eV energy barrier. The reaction between CO and lattice O is the rate‐determining step of Mars‐van‐Krevelen (MvK) type CO oxidation with the energy barrier of 1.629 eV. The CO oxidation cycle initiated by the reaction between coadsorbed CO and O2 at the CuI site has a relatively lower energy barrier of 1.082 eV and is, therefore, more likely to proceed compared with the MvK cycle. Microkinetic rate constants of elementary reaction steps based on the transition state theory were deduced, which could be helpful in the kinetic modeling of CO oxidation on Cu2O surface.  相似文献   

20.
The Fischer–Tropsch process, or the catalytic hydrogenation of carbon monoxide (CO), produces long chain hydrocarbons and offers an alternative to the use of crude oil for chemical feedstocks. The observed size dependence of cobalt (Co) catalysts for the Fischer–Tropsch reaction was studied with colloidally prepared Co nanoparticles and a chemical transient kinetics reactor capable of measurements under non-steady-state conditions. Co nanoparticles of 4.3 nm and 9.5 nm diameters were synthesized and tested under atmospheric pressure conditions and H2/CO=2. Large differences in carbon coverage (ΘC) were observed for the two catalysts: the 4.3 nm Co catalyst has a ΘC less than one while the 9.5 nm Co catalyst supports a ΘC greater than two. The monomer units present on the surface during reaction are identified as single carbon species for both sizes of Co nanoparticles, and the major CO dissociation site is identified as the B5-B geometry. The difference in activity of Co nanoparticles was found to be a result of the structure sensitivity caused by the loss of these specific types of sites at smaller nanoparticle sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号